Forecasting
Blog Posts
Talks
-
ICLR 2020
- April 29: Climate Science and Adaptation Day
- April 30: Cross-cutting Methods Day
Workshop Papers
Venue | Title |
---|---|
AAAI FSS 2022 |
Imputation of Missing Streamflow Data at Multiple Gauging Stations in Benin Republic
Abstract and authors: (click to expand)Abstract: Streamflow observation data is vital for flood monitoring, agricultural, and settlement planning. However, such streamflow data are commonly plagued with missing observations due to various causes such as harsh environmental conditions and constrained operational resources. This problem is often more pervasive in under-resourced areas such as Sub-Saharan Africa. In this work, we reconstruct streamflow time series data through bias correction of the GEOGloWS ECMWF streamflow service (GESS) forecasts at ten river gauging stations in Benin. We perform bias correction by fitting Quantile Mapping, Gaussian Process, and Elastic Net regression in a constrained training period. We show by simulating missingness in a testing period that GESS forecasts have a significant bias that results in low predictive skill over the ten Beninese stations. Our findings suggest that overall bias correction by Elastic Net and Gaussian Process regression achieves superior skill relative to traditional imputation by Random Forest, k-Nearest Neighbour, and GESS lookup. The findings of this work provide a basis for integrating global GESS streamflow data into operational early-warning decision-making systems (e.g., flood alert) in countries vulnerable to drought and flooding due to extreme weather events. Authors: Rendani Mbuvha (Queen Mary University of London), Julien Yise Peniel Adounkpe (International Water Management Institute (IWMI)), Wilson Tsakane Mongwe (University of Johannesburg), Mandela Houngnibo (Agence Nationale de la Météorologie du Benin Meteo Benin), Nathaniel Newlands (Summerland Research and Development Centre, Agriculture and Agri-Food Canada) and Tshilidzi Marwala (University of Johannesburg) |
NeurIPS 2019 |
Forecasting El Niño with Convolutional and Recurrent Neural Networks
(Papers Track)
Abstract and authors: (click to expand)Abstract: The El Niño Southern Oscillation (ENSO) is the dominant mode of variability in the climate system on seasonal to decadal timescales. With foreknowledge of the state of ENSO, stakeholders can anticipate and mitigate impacts in climate-sensitive sectors such as agriculture and energy. Traditionally, ENSO forecasts have been produced using either computationally intensive physics-based dynamical models or statistical models that make limiting assumptions, such as linearity between predictors and predictands. Here we present a deep-learning-based methodology for forecasting monthly ENSO temperatures at various lead times. While traditional statistical methods both train and validate on observational data, our method trains exclusively on physical simulations. With the entire observational record as an out-of-sample validation set, the method’s skill is comparable to that of operational dynamical models. The method is also used to identify disagreements among climate models about the predictability of ENSO in a world with climate change. Authors: Ankur Mahesh (ClimateAi); Maximilian Evans (ClimateAi); Garima Jain (ClimateAi); Mattias Castillo (ClimateAi); Aranildo Lima (ClimateAi); Brent Lunghino (ClimateAi); Himanshu Gupta (ClimateAi); Carlos Gaitan (ClimateAi); Jarrett Hunt (ClimateAi); Omeed Tavasoli (ClimateAi); Patrick Brown (ClimateAi, San Jose State University); V. Balaji (Geophysical Fluid Dynamics Laboratory) |