Extreme Weather
Blog Posts
Innovation Grants
Talks
-
NeurIPS 2021
- Anima Anandkumar: Principled Al Algorithms for predicting and mitigating climate change (Invited talk)
- Amy McGovern: Developing Trustworthy AI for Weather and Climate (Invited talk)
-
ICLR 2020
-
April 26: Main Workshop
- Georgina Campbell Flatter: Why the Climate Change AI Community Should Care About Weather: A New Approach for Africa (Invited talk)
-
April 26: Main Workshop
Workshop Papers
Venue | Title |
---|---|
NeurIPS 2024 |
No Location Left Behind: Introducing the Fairness Assessment for Implicit Representations of Earth Data
(Papers Track)
Abstract and authors: (click to expand)Abstract: Encoding and predicting physical measurements such as temperature or carbon dioxide is instrumental to many high-stakes challenges – including climate change. Yet, all recent advances solely assess models’ performances at a global scale. But while models’ predictions are improving on average over the entire globe, performances on sub-groups such as islands or coastal areas are left uncharted. To ensure safe deployment of those models, we thus introduce FAIR-Earth, a fine-grained evaluation suite made of diverse and high-resolution dataset. Our findings are striking–current methods produce highly biased predictions towards specific geospatial locations. The specifics of the biases vary based on the data modality and hyper-parameters of the models. Hence, we hope that FAIR-Earth will enable future research to design solutions aware of those per-group biases. Authors: Daniel Cai (Brown University); Randall Balestriero (Brown University) |
NeurIPS 2024 |
Using Convolutional Neural Processes to Produce High-Resolution Weather Datasets Over New Zealand
(Papers Track)
Abstract and authors: (click to expand)Abstract: In recent years, there has been a surge in the development and success of artificial intelligence methods for global weather forecasting and climate modelling. For regional models, however, there is a lack of high-resolution datasets that can be used to train data-driven forecasting models. In this work, we showcase the use of convolutional neural processes (ConvNP) to generate hourly high-resolution (1km) weather datasets over New Zealand for temperature and precipitation. ConvNP models allow us to produce datasets that are enhanced by station observations and provide uncertainty estimates in their predictions. The generated datasets have applications in AI weather and climate models, model verification, and broader environmental research. Authors: Emily O'Riordan (Bodeker Scientific) |
NeurIPS 2024 |
Harnessing AI for Wildfire Defense: An approach to Predict and Mitigate Global Fire Risk
(Papers Track)
Abstract and authors: (click to expand)Abstract: Wildfires pose a critical threat to wildlife, economies, properties, and human lives globally, making accurate risk assessment essential for effective management and mitigation. This study introduces a novel machine learning-based approach utilizing a Convolutional Neural Network (CNN) to evaluate wildfire risks across diverse ecosystems. Leveraging a comprehensive dataset of remote-sensed variables—including topography, vegetation health indicators, and climatic conditions—our model operates at a spatial resolution of 1000 meters per pixel, providing enhanced precision in predicting wildfire occurrences. The CNN outperforms state-of-the-art models, achieving a fire detection ratio of 0.82 and a no-fire detection ratio of 0.87. The results demonstrate that most dataset variables are crucial for accurate risk assessment, although some are non-essential. By integrating data from regions around the globe, this study underscores the feasibility and effectiveness of implementing globally scalable wildfire prediction tools. Authors: Hassan Ashfaq (Ghulam Ishaq Khan Institute of Engineering Sciences and Technology) |
NeurIPS 2024 |
Continuous latent representations for modeling precipitation with deep learning
(Papers Track)
Abstract and authors: (click to expand)Abstract: The sparse and spatio-temporally discontinuous nature of precipitation data presents significant challenges for simulation and statistical processing for bias correction and downscaling. These include incorrect representation of intermittency and extreme values (critical for hydrology applications), Gibbs phenomenon upon regridding, and lack of fine scales details. To address these challenges, a common approach is to transform the precipitation variable nonlinearly into one that is more malleable. In this work, we explore how deep learning can be used to generate a smooth, spatio-temporally continuous variable as a proxy for simulation of precipitation data. We develop a normally distributed field called pseudo-precipitation (PP) as an alternative for simulating precipitation. The practical applicability of this variable is investigated by applying it for downscaling precipitation from 1\degree (\(\sim\) 100 km) to 0.25\degree (\(\sim\) 25 km). Authors: Gokul Radhakrishnan (Verisk Analytics); Rahul Sundar (Verisk, India); Nishant Parashar (Verisk Analytics); Antoine Blanchard (Verisk); Daiwei Wang (Verisk Analytics); Boyko Dodov (Verisk Analytics) |
NeurIPS 2024 |
Climate Impact Assessment Requires Weighting: Introducing the Weighted Climate Dataset
(Papers Track)
Abstract and authors: (click to expand)Abstract: High-resolution gridded climate data are readily available from multiple sources, yet climate research and decision-making increasingly require country and region-specific climate information weighted by socio-economic factors. Moreover, the current landscape of disparate data sources and inconsistent weighting methodologies exacerbates the reproducibility crisis and undermines scientific integrity. To address these issues, we have developed a globally comprehensive dataset at both country (GADM0) and region (GADM1) levels, encompassing various climate indicators (precipitation, temperature, SPEI, wind gust). Our methodology involves weighting gridded climate data by population density, night-time light intensity, cropland area, and concurrent population count – all proxies for socio-economic activity – before aggregation. We process data from multiple sources, offering daily, monthly, and annual climate variables spanning from 1900 to 2023. A unified framework streamlines our preprocessing steps, and rigorous validation against leading climate impact studies ensures data reliability. The resulting Weighted Climate Dataset is publicly accessible through an online dashboard at https://weightedclimatedata.streamlit.app/. Authors: Marco Gortan (University of Basel); Lorenzo Testa (Carnegie Mellon University); Giorgio Fagiolo (Sant'Anna School of Advanced Studies); Francesco Lamperti (Sant'Anna School of Advanced Studies) |
NeurIPS 2024 |
Multi-Source Temporal Attention Network for Precipitation Nowcasting
(Papers Track)
Best Pathway to Impact
Abstract and authors: (click to expand)Abstract: Precipitation nowcasting is crucial across various industries and plays a significant role in mitigating and adapting to climate change. We introduce an efficient deep learning model for precipitation nowcasting, capable of predicting rainfall up to 8 hours in advance with greater accuracy than existing operational physics-based and extrapolation-based models. Our model leverages multi-source meteorological data and physics-based forecasts to deliver high-resolution predictions in both time and space. It captures complex spatio-temporal dynamics through temporal attention networks and is optimized using data quality maps and dynamic thresholds. Experiments demonstrate that our model outperforms state-of-the-art, and highlight its potential for fast reliable responses to evolving weather conditions. Authors: Rafael Pablos Sarabia (Aarhus University & Cordulus); Joachim Nyborg (Cordulus); Morten Birk (Cordulus); Jeppe Liborius Sjørup (Cordulus); Anders Lillevang Vesterholt (Cordulus); Ira Assent (Aarhus University) |
NeurIPS 2024 |
Clustering-Based Framework for Assessing Transportation Resilience to Flood Events
(Papers Track)
Abstract and authors: (click to expand)Abstract: Flooding presents a significant threat to critical infrastructures (CIs), particularly in Spain, which is frequently cited as the most flood-affected country in Europe. The transportation sector, a crucial CI, is particularly susceptible to such events. It is imperative to monitor the corresponding resilience to improve disaster management efforts. With the advancements in data science and machine learning, various approaches have been developed in this area; however, researchers encounter challenges such as data inconsistency and reliability. This paper presents a resilience assessment framework that utilises machine learning and open data to evaluate the impact of floods on Spain's transportation network. The analysis aims to facilitate well-informed decision-making by stakeholders and government entities, thereby enhancing disaster preparedness and response. Authors: Matheus Pedra (TECNUN); Leire Labaka (TECNUN); Josune Hernantes (TECNUN) |
NeurIPS 2024 |
TAUDiff: Improving statistical downscaling for extreme-event simulation using generative diffusion models
(Papers Track)
Abstract and authors: (click to expand)Abstract: Deterministic regression-based downscaling models for climate variables often suffer from spectral bias, which can be mitigated by generative models like diffusion models. To enable efficient and reliable simulation of extreme weather events, it is crucial to achieve rapid turnaround, dynamical consistency, and accurate spatio-temporal spectral recovery. We propose an efficient correction diffusion model TAUDiff that combines a deterministic spatio-temporal model for mean field downscaling with a smaller generative diffusion model for recovering the fine-scale stochastic features. This approach can not only ensure quicker simulation of extreme events but also reduce overall carbon footprint due to low inference times. Authors: Rahul Sundar (Verisk, India); Nishant Parashar (Verisk); Antoine Blanchard (Verisk); Boyko Dodov (Verisk) |
NeurIPS 2024 |
Estimating atmospheric variables from Digital Typhoon Satellite Images via Conditional Denoising Diffusion Models
(Papers Track)
Abstract and authors: (click to expand)Abstract: This study explores the application of diffusion models in the field of typhoons, predicting multiple ERA5 meteorological variables simultaneously from Digital Typhoon satellite images. The focus of this study is taken to be Taiwan, an area very vulnerable to typhoons. By comparing the performance of Conditional Denoising Diffusion Probability Model (CDDPM) with Convolutional Neural Networks (CNN) and Squeeze-and-Excitation Networks (SENet), results suggest that the CDDPM performs best in generating accurate and realistic meteorological data. Specifically, CDDPM achieved a PSNR of 32.807, which is approximately 7.9% higher than CNN and 5.5% higher than SENet. Furthermore, CDDPM recorded an RMSE of 0.032, showing a 11.1% improvement over CNN and 8.6% improvement over SENet. A key application of this research can be for imputation purposes in missing meteorological datasets and generate additional high-quality meteorological data using satellite images. It is hoped that the results of this analysis will enable more robust and detailed forecasting, reducing the impact of severe weather events on vulnerable regions Authors: Zhangyue Ling (Imperial College London); Pritthijit Nath (University Of Cambridge); Cesar Quilodran-Casas (Imperial College London) |
NeurIPS 2024 |
Generating Climate Dataset in a Data-scarce Region of Choke Mountain Watersheds in Ethiopia Using Machine Learning Techniques
(Proposals Track)
Abstract and authors: (click to expand)Abstract: In regions where climate data is scarce, adapting to climate change becomes a significant challenge due to the lack of reliable information. This project addresses this issue by using Artificial Intelligence (AI) techniques to generate comprehensive climate datasets in a data-scarce region of Choke Mountain Watersheds in Ethiopia. The primary objectives are to fill gaps in existing in-situ precipitation and temperature observations and to create data for areas that are currently unmonitored. By applying advanced machine learning algorithms, we will improve the accuracy and reliability of climate data, and fill gaps in current datasets to ensure completeness. Ensuring the availability of a continuous dataset is crucial for informed decision-making in climate change adaptation. Authors: Sintayehu Abebe (Debre Markos University); Kassahun Tadesse (Debre Markos University); Mulu Kerebih (Debre Markos University); Bekalu Asres (Debre Markos University); Bewketu Mulu (Debre Markos University); Varsha Gopalakrishnan (Self) |
NeurIPS 2024 |
Flood Prediction in Kenya - Leveraging Pre-Trained Models to Generate More Validation Data in Sparse Observation Settings
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Kenya has lacked a national flood risk management framework and also has sparse flood observation data, which makes developing deep learning flood prediction models on a national scale challenging. Flood prediction models are critical to operationalize Early Warning Systems (EWS). We propose two different models to feed into an EWS. The first model will leverage statistical machine learning approaches to predict flood or no flood events on a 0.25 x 0.25 degree scale (approximately 30 km x 30 km in Kenya) using ERA5 features as well as land cover and Digital Terrain Model (DTM) data. This first model will also be used to create a baseline prediction benchmark across the entire country of Kenya. The second model will leverage pre-trained remote sensing based models to generate segmented flood or no flood data on a fine spatial scale. This will increase the number of validation points by a factor of 1000, which opens the door to deep learning approaches to predict flood or no-flood events on a 30 meter x 30 meter spatial scale. We hope that this approach of leveraging pre-trained models to generate fine scale validation data can eventually be used widely in other extreme climate event forecasting scenarios given the scarcity of historical extreme climate events compared to normal weather events. Authors: Alim Karimi (Self / Purdue University); David Quispe (University of Toronto); Hammed Akande (Concordia University); Nicole Mong'are (Athi Water Works Development Agency); Valerie Brosnan (Mitga Solutions); Asbina Baral (Ministry of Education, Science and Technology) |
ICLR 2024 |
Scaling Transformers for Skillful and Reliable Medium-range Weather Forecasting
(Papers Track)
Overall Best Paper
Abstract and authors: (click to expand)Abstract: Weather forecasting is a fundamental problem for anticipating and mitigating the impacts of climate change. Recently, data-driven approaches for weather forecasting based on deep learning have shown great promise, achieving accuracies that are competitive with operational systems. However, those methods often employ complex, customized architectures without sufficient ablation analysis, making it difficult to understand what truly contributes to their success. Here we introduce Stormer, a simple transformer model that achieves state-of-the-art performance on weather forecasting with minimal changes to the standard transformer backbone. We identify the key components of Stormer through careful empirical analyses, including weather-specific embedding, randomized dynamics forecast, and pressure-weighted loss. At the core of Stormer is a randomized forecasting objective that trains the model to forecast the weather dynamics over varying time intervals. During inference, this allows us to produce multiple forecasts for a target lead time and combine them to obtain better forecast accuracy. On WeatherBench 2, Stormer performs competitively at short to medium-range forecasts and outperforms current methods beyond 7 days, while requiring orders-of-magnitude less training data and compute. Additionally, we demonstrate Stormer’s favorable scaling properties, showing consistent improvements in forecast accuracy with increases in model size and training tokens. Authors: Tung Nguyen (University of California, Los Angeles); Rohan Shah (Carnegie Mellon University); Hritik Bansal (UCLA); Troy Arcomano (Argonne National Laboratory); Sandeep Madireddy (Argonne National Laboratory); Romit Maulik (Argonne National Laboratory); Veerabhadra Kotamarthi (Argonne National Laboratory); Ian Foster (Computation Institute); Aditya Grover (UCLA) |
ICLR 2024 |
PostRainBench: A comprehensive benchmark and a new model for precipitation forecasting
(Papers Track)
Abstract and authors: (click to expand)Abstract: Accurate precipitation forecasting is a vital challenge of societal importance. Though data-driven approaches have emerged as a widely used solution, solely relying on data-driven approaches has limitations in modeling the underlying physics, making accurate predictions difficult. We focus on the Numerical Weather Prediction (NWP) post-processing based precipitation forecasting task to couple Machine Learning techniques with traditional NWP. This task remains challenging due to the imbalanced precipitation data and complex relationships between multiple meteorological variables. To address these limitations, we introduce the PostRainBench, a comprehensive multi-variable NWP post-processing benchmark, and CAMT, a simple yet effective Channel Attention Enhanced Multi-task Learning framework with a specially designed weighted loss function. Extensive experimental results on the proposed benchmark show that our method outperforms state-of-the-art methods by 6.3%, 4.7%, and 26.8% in rain CSI and improvements of 15.6%, 17.4%, and 31.8% over NWP predictions in heavy rain CSI on respective datasets. Most notably, our model is the first deep learning-based method to outperform NWP approaches in heavy rain conditions. These results highlight the potential impact of our model in reducing the severe consequences of extreme rainfall events. Our datasets and code are available at https://github.com/yyyujintang/PostRainBench. Authors: Yujin Tang (The Hong Kong University of Science and Technology (Guangzhou)); Jiaming Zhou (Hong Kong University of Science and Technology (Guangzhou)); Xiang Pan (Nanjing University); Zeying Gong (Hong Kong University of Science and Technology (Guangzhou)); Junwei Liang (The Hong Kong University of Science and Technology (Guangzhou)) |
ICLR 2024 |
Interpretable Machine Learning for Extreme Events detection: An application to droughts in the Po River Basin
(Papers Track)
Abstract and authors: (click to expand)Abstract: The increasing frequency and intensity of drought events-periods of significant decrease in water availability-are among the most alarming impacts of climate change. Monitoring and detecting these events is essential to mitigate their impact on our society. However, traditional drought indices often fail to accurately detect such impacts as they mostly focus on single precursors. In this study, we leverage machine learning algorithms to define a novel data-driven, impact-based drought index reproducing as target the Vegetation Health Index, a satellite signal that directly assesses the vegetation status. We first apply novel dimensionality reduction methods that allow for interpretable spatial aggregation of features related to precipitation, temperature, snow, and lakes. Then, we select the most informative and non-redundant features through filter feature selection. Finally, linear supervised learning methods are considered, given the small number of samples and the aim of preserving interpretability. The experimental setting focuses on ten sub-basins of the Po River basin, but the aim is to design a machine learning-based workflow applicable on a large scale. Authors: Paolo Bonetti (Politecnico di Milano); Matteo Giuliani (Politecnico di Milano); Veronica Cardigliano (Politecnico di Milano); Alberto Maria Metelli (Politecnico di Milano); Marcello Restelli (Politecnico di Milano); Andrea Castelletti (Politecnico di Milano) |
ICLR 2024 |
Forecasting Tropical Cyclones with Cascaded Diffusion Models
(Papers Track)
Abstract and authors: (click to expand)Abstract: As tropical cyclones become more intense due to climate change, the rise of Al-based modelling provides a more affordable and accessible approach compared to traditional methods based on mathematical models. This work leverages generative diffusion models to forecast cyclone trajectories and precipitation patterns by integrating satellite imaging, remote sensing, and atmospheric data. It employs a cascaded approach that incorporates three main tasks: forecasting, super-resolution, and precipitation modelling. The training dataset includes 51 cyclones from six major tropical cyclone basins from January 2019 - March 2023. Experiments demonstrate that the final forecasts from the cascaded models show accurate predictions up to a 36-hour rollout, with excellent Structural Similarity (SSIM) and Peak-Signal-To-Noise Ratio (PSNR) values exceeding 0.5 and 20 dB, respectively, for all three tasks. The 36-hour forecasts can be produced in as little as 30 mins on a single Nvidia A30/RTX 2080 Ti. This work also highlights the promising efficiency of Al methods such as diffusion models for high-performance needs in weather forecasting, such as tropical cyclone forecasting, while remaining computationally affordable, making them ideal for highly vulnerable regions with critical forecasting needs and financial limitations. Code accessible at \url{https://github.com/nathzi1505/forecast-diffmodels}. Authors: Pritthijit Nath (Imperial College London); Pancham Shukla (Imperial College London); Shuai Wang (University of Delaware); Cesar Quilodran-Casas (Imperial College London) |
ICLR 2024 |
DETECTION OF METEOROLOGICAL VARIABLES IN A WIND FARM INFLUENCING THE EXTREME WIND SPEED BY HETEROGENEOUS GRANGER CAUSALITY
(Papers Track)
Abstract and authors: (click to expand)Abstract: For an efficiently managed wind farm and wind power generation under adverse weather, knowledge of meteorological parameters influencing wind speed is of crucial importance for optimized and improved forecasts. We investigate temporal effects of wind speed related processes such as wakes within the wind farm using the Heterogeneous Graphical Granger model. The ERA5 meteorological reanalysis was used to generate wind farm power production data in Eastern Austria. We evaluated six different scenarios for the hydrological half-year period, based on moderate wind speed and varying temporal intervals of low or high extreme wind speed This allows to carry out causal reasoning about possible causes of extreme wind speed in a wind farm. A set of causal parameters for each of the scenarios was discovered enabling future early warning and for taking management measures for wind farm power generation management under adverse weather conditions. Authors: Katerina Schindlerova (UniVie); Irene Schicker (Geos); Kejsi Hoxhallari (UniVie); Claudia Plant (University of Vienna, Austria) |
ICLR 2024 |
A Deep Learning Framework to Efficiently Estimate Precipitation at the Convection Permitting Scale
(Papers Track)
Abstract and authors: (click to expand)Abstract: Precipitation-related extreme events are rapidly growing due to climate change, emphasizing the need for accurate hazard projections. To effectively model the convective phenomena driving severe precipitation, high-resolution estimates are crucial. Existing methods struggle with either insufficient expressiveness in capturing complex convective dynamics, due to the low resolution, or excessive computational demands. In response, we propose an innovative deep learning framework that efficiently harnesses available data to yield precise results. This model, based on graph neural networks, utilises two grids with different resolution and two sets of edges to represent spatial relationships. Employing as input ERA5 reanalysis atmospheric variables on an approximately 25 km grid, the framework produces hourly precipitation estimates on a finer 3 km grid. Findings are promising in accurately capturing yearly precipitation distribution and estimating cumulative precipitation during extreme events. Notably, the model demonstrates effectiveness in spatial regions not included in the training, motivating further exploration of its transferability potential. Authors: Valentina Blasone (University of Trieste); Erika Coppola (Earth System Physics Section, ICTP, Trieste); Guido Sanguinetti (SISSA); Viplove Arora (Theoretical and Scientific Data Science, SISSA, Trieste); Serafina Di Gioia (Earth System Physics Section, ICTP, Trieste); Luca Bortolussi (University of Trieste) |
ICLR 2024 |
Severe Wind Event Prediction with Multivariate Physics-Informed Deep Learning
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Wind turbines play a crucial role in combating climate change by harnessing the force of the wind to generate clean and renewable energy. One key factor in ensuring the long-term effectiveness of wind turbines is the reduction of operating costs due to maintenance. Severe weather events, such as extreme changes in wind, can damage turbines, resulting in costly maintenance and economic losses in power production. We propose a preliminary physics-informed deep learning model to improve predictions of severe wind events and a multivariate time series extension for this work. Authors: Willa Potosnak (Carnegie Mellon University); Cristian I Challu (Carnegie Mellon University); Kin G. Olivares (Carnegie Mellon University); James K Miller (Carnegie Mellon University); Artur Dubrawski (Carnegie Mellon University) |
NeurIPS 2023 |
Self-supervised Pre-training for Precipitation Post-processor
(Papers Track)
Abstract and authors: (click to expand)Abstract: Securing sufficient forecast lead time for local precipitation is essential for preventing hazardous weather events. Nonetheless, global warming-induced climate change is adding to the challenge of accurately predicting severe precipitation events, such as heavy rainfall. In this work, we propose a deep learning-based precipitation post-processor approach to numerical weather prediction (NWP) models. The precipitation post-processor consists of (i) self-supervised pre-training, where parameters of encoder are pre-trained on the reconstruction of masked variables of the atmospheric physics domain, and (ii) transfer learning on precipitation segmentation tasks (target domain) from the pre-trained encoder. We also introduce a heuristic labeling approach for effectively training class-imbalanced datasets. Our experiment results in precipitation correction for regional NWP show that the proposed method outperforms other approaches. Authors: Sojung An (Korea Institute of Atmosphere Prediction Systems); Junha Lee (Korea Institute of Industrial Technology); Jiyeon Jang (Korea Institute of Atmosphere Prediction Systems); Inchae Na (Korea Institute of Atmosphere Prediction Systems); Wooyeon Park (Korea Institute of Atmosphere Prediction Systems); Sujeong You (KITECH) |
NeurIPS 2023 |
Machine learning derived sub-seasonal to seasonal extremes
(Papers Track)
Abstract and authors: (click to expand)Abstract: Improving the accuracy of sub-seasonal to seasonal (S2S) extremes can significantly impact society. Providing S2S forecasts in risk or extreme indices can aid disaster response, especially for drought and flood events. Additionally, it can provide updates on disease outbreaks and aid in predicting the occurrence, duration, and decline of heat waves. This work uses a transformer model to predict the daily temperature distributions in the S2S scale. We analyze how the model performs in extreme temperatures by comparing its output distributions with those obtained from ECMWF forecasts across different metrics. Our model produces better responses for temperatures in average and extreme regions. Also, we show how our model better captures the heatwave that hit Europe in the summer of 2019. Authors: Daniel Salles Civitarese (IBM Research, Brazil); Bianca Zadrozny (IBM Research) |
NeurIPS 2023 |
Machine learning applications for weather and climate predictions need greater focus on extremes
(Papers Track)
Abstract and authors: (click to expand)Abstract: Multiple studies have now demonstrated that machine learning (ML) can give improved skill for predicting or simulating fairly typical weather events, for tasks such as short-term and seasonal weather forecasting, downscaling simulations to higher resolution and emulating and speeding up expensive model parameterisations. Many of these used ML methods with very high numbers of parameters, such as neural networks, which are the focus of the discussion here. Not much attention has been given to the performance of these methods for extreme event severities of relevance for many critical weather and climate prediction applications, with return periods of more than a few years. This leaves a lot of uncertainty about the usefulness of these methods, particularly for general purpose prediction systems that must perform reliably in extreme situations. ML models may be expected to struggle to predict extremes due to there usually being few samples of such events. However, there are some studies that do indicate that ML models can have reasonable skill for extreme weather, and that it is not hopeless to use them in situations requiring extrapolation. This paper reviews these studies, updating an earlier review, and argues that this is an area that needs researching more. Ways to get a better understanding of how well ML models perform at predicting extreme weather events are discussed. Authors: Peter Watson (Bristol) |
NeurIPS 2023 |
An LSTM-based Downscaling Framework for Australian Precipitation Projections
(Papers Track)
Abstract and authors: (click to expand)Abstract: Understanding potential changes in future rainfall and their local impacts on Australian communities can inform adaptation decisions worth billions of dollars in insurance, agriculture, and other sectors. This understanding relies on downscaling a large ensemble of coarse Global Climate Models (GCMs), our primary tool for simulating future climate. However, the prohibitively high computational cost of downscaling has been a significant barrier. In response, this study develops a cost-efficient downscaling framework for daily precipitation using Long Short-Term Memory (LSTM) models. The models are trained with ERA5 reanalysis data and a customized quantile loss function to better capture precipitation extremes. The framework is employed to downscale precipitation from a GCM member of the CMIP6 ensemble. We demonstrate the skills of the downscaling models to capture spatial and temporal characteristics of precipitation. We also explore regional future changes in precipitation extremes projected by the downscaled GCM. In general, this framework will enable the generation of a large ensemble of regional future projections for Australian rainfall. This will further enhance the assessment of likely climate risks and the quantification of their uncertainties. Authors: Matthias Bittner (Vienna University of Technology); Sanaa Hobeichi (The University of New South Wales); Muhammad Zawish (Walton Institute, WIT); Samo DIATTA (Assane Seck University of Ziguinchor); Remigius Ozioko (University of Nigeria); Sharon Xu (Indigo Ag); Axel Jantsch (TU Wien) |
NeurIPS 2023 |
FireSight: Short-Term Fire Hazard Prediction Based on Active Fire Remote Sensing Data
(Papers Track)
Abstract and authors: (click to expand)Abstract: Wildfires are becoming unpredictable natural hazards in many regions due to climate change. However, existing state-of-the-art wildfire forecasting tools, such as the Fire Weather Index (FWI), rely solely on meteorological input parameters and have limited ability to model the increasingly dynamic nature of wildfires. In response to the escalating threat, our work addresses this shortcoming in short-term fire hazard prediction. First, we present a comprehensive and high fidelity remotely sensed active fire dataset fused from over 20 satellites. Second, we develop region-specific ML-based 3-7 day wildfire hazard prediction models for hazard South America, Australia, and Southern Europe. The different models cover pixel-wise, spatial and spatio-temporal architectures, and utilize weather, fuel and location data. We evaluate the models using time-based cross-validation and can show superior performance with a PR-AUC score up to 44 times higher compared to the baseline FWI model. Using explainable AI methods, we show that these data-driven models are also capable of learning meaningful physical patterns and inferring region-specific wildfire drivers. Authors: Julia Gottfriedsen (OroraTech GmbH); Johanna Strebl (OroraTech GmbH); Max Berrendorf (Ludwig-Maximilians-Universität München); Martin Langer (OroraTech GmbH); Volker Tresp (Ludwig-Maximilians-Universität München) |
NeurIPS 2023 |
Difference Learning for Air Quality Forecasting Transport Emulation
(Papers Track)
Abstract and authors: (click to expand)Abstract: Human health is negatively impacted by poor air quality including increased risk for respiratory and cardiovascular disease. Due to a recent increase in extreme air quality events, both globally and locally in the United States, finer resolution air quality forecasting guidance is needed to effectively adapt to these events. The National Oceanic and Atmospheric Administration provides air quality forecasting guidance for the Continental United States. Their air quality forecasting model is based on a 15 km spatial resolution; however, the goal is to reach a three km spatial resolution. This is currently not feasible due in part to prohibitive computational requirements for modeling the transport of chemical species. In this work, we describe a deep learning transport emulator that is able to reduce computations while maintaining skill comparable with the existing numerical model. We show how this method maintains skill in the presence of extreme air quality events, making it a potential candidate for operational use. We also explore evaluating how well this model maintains the physical properties of the modeled transport for a given set of species. Authors: Reed R Chen (Johns Hopkins University Applied Physics Laboratory); Christopher Ribaudo (Johns Hopkins University Applied Physics Laboratory); Jennifer Sleeman (University of Maryland, Baltimore County and Johns Hopkins University Applied Physics Laboratory); Chace Ashcraft (JHU/APL); Marisa Hughes (JHU) |
NeurIPS 2023 |
Fusion of Physics-Based Wildfire Spread Models with Satellite Data using Generative Algorithms
(Papers Track)
Abstract and authors: (click to expand)Abstract: Climate change has driven increases in wildfire prevalence, prompting development of wildfire spread models. Advancements in the use of satellites to detect fire locations provides opportunity to enhance fire spread forecasts from numerical models via data assimilation. In this work, a method is developed to infer the history of a wildfire from satellite measurements using a conditional Wasserstein Generative Adversarial Network (cWGAN), providing the information necessary to initialize coupled atmosphere-wildfire models in a physics-informed approach based on measurements. The cWGAN, trained with solutions from WRF-SFIRE, produces samples of fire arrival times (fire history) from the conditional distribution of arrival times given satellite measurements, and allows for assessment of prediction uncertainty. The method is tested on four California wildfires and predictions are compared against measured fire perimeters and reported ignition times. An average Sorensen's coefficient of 0.81 for the fire perimeters and an average ignition time error of 32 minutes suggests that the method is highly accurate. Authors: Bryan Shaddy (University of Southern California); Deep Ray (University of Maryland); Angel Farguell (San Jose State University); Valentina Calaza (University of Southern California); Jan Mandel (University of Colorado Denver); James Haley (Cooperative Institute for Research in the Atmosphere); Kyle Hilburn (Cooperative Institute for Research in the Atmosphere); Derek Mallia (University of Utah); Adam Kochanski (San Jose State University); Assad Oberai (University of Southern California) |
ICLR 2023 |
Global Flood Prediction: a Multimodal Machine Learning Approach
(Papers Track)
Abstract and authors: (click to expand)Abstract: Flooding is one of the most destructive and costly natural disasters, and climate changes would further increase risks globally. This work presents a novel mul- timodal machine learning approach for multi-year global flood risk prediction, combining geographical information and historical natural disaster dataset. Our multimodal framework employs state-of-the-art processing techniques to extract embeddings from each data modality, including text-based geographical data and tabular-based time-series data. Experiments demonstrate that a multimodal ap- proach, that is combining text and statistical data, outperforms a single-modality approach. Our most advanced architecture, employing embeddings extracted us- ing transfer learning upon DistilBert model, achieves 75%-77% ROCAUC score in predicting the next 1-5 year flooding event in historically flooded locations. This work demonstrates the potentials of using machine learning for long-term planning in natural disaster management Authors: Cynthia Zeng (MIT); Dimitris Bertsimas (MIT) |
ICLR 2023 |
Improving global high-resolution Earth system model simulations of precipitation with generative adversarial networks
(Papers Track)
Abstract and authors: (click to expand)Abstract: Precipitation extremes are expected to become stronger and more frequent in response to anthropogenic global warming. Accurately projecting the ecological and socioeconomic impacts is an urgent task. Impact models are developed and calibrated with observation-based data but rely on Earth system model (ESM) output for future scenarios. ESMs, however, exhibit significant biases in their output because they cannot fully resolve complex cross-scale interactions of processes that produce precipitation cannot. State-of-the-art bias correction methods only address errors in the simulated frequency distributions, locally at every individual grid cell. Improving unrealistic spatial patterns of the ESM output, which would require spatial context, has not been possible so far. Here we show that a post-processing method based on physically constrained generative adversarial networks (GANs) can correct biases of a state-of-the-art global ESM both in local frequency distributions and in the spatial patterns at once. While our method improves local frequency distributions similarly well to a gold-standard ESM bias-adjustment framework, it strongly outperforms existing methods in correcting spatial patterns. Our study highlights the importance of physical constraints in neural networks for out-of-sample predictions in the context of climate change. Authors: Philipp Hess (Technical University of Munich) |
ICLR 2023 |
Improving extreme weather events detection with light-weight neural networks
(Papers Track)
Abstract and authors: (click to expand)Abstract: To advance automated detection of extreme weather events, which are increasing in frequency and intensity with climate change, we explore modifications to a novel light-weight Context Guided convolutional neural network architecture trained for semantic segmentation of tropical cyclones and atmospheric rivers in climate data. Our primary focus is on tropical cyclones, the most destructive weather events, for which current models show limited performance. We investigate feature engineering, data augmentation, learning rate modifications, alternative loss functions, and architectural changes. In contrast to previous approaches optimizing for intersection over union, we specifically seek to improve recall to penalize under-counting and prioritize identification of tropical cyclones. We report success through the use of weighted loss functions to counter class imbalance for these rare events. We conclude with directions for future research on extreme weather events detection, a crucial task for prediction, mitigation, and equitable adaptation to the impacts of climate change. Authors: Romain Lacombe (Stanford University); Hannah Grossman (Stanford); Lucas P Hendren (Stanford University); David Ludeke (Stanford University) |
ICLR 2023 |
Long-lead forecasts of wintertime air stagnation index in southern China using oceanic memory effects
(Papers Track)
Abstract and authors: (click to expand)Abstract: Stagnant weather condition is one of the major contributors to air pollution as it is favorable for the formation and accumulation of pollutants. To measure the atmosphere’s ability to dilute air pollutants, Air Stagnation Index (ASI) has been introduced as an important meteorological index. Therefore, making long-lead ASI forecasts is vital to make plans in advance for air quality management. In this study, we found that autumn Niño indices derived from sea surface temperature (SST) anomalies show a negative correlation with wintertime ASI in southern China, offering prospects for a prewinter forecast. We developed an LSTM-based model to predict the future wintertime ASI. Results demonstrated that multivariate inputs (past ASI and Niño indices) achieve better forecast performance than univariate input (only past ASI). The model achieves a correlation coefficient of 0.778 between the actual and predicted ASI, exhibiting a high degree of consistency. Authors: Chenhong Zhou (Hong Kong Baptist University); Xiaorui Zhang (Hong Kong Baptist University); Meng Gao (Hong Kong Baptist University); Shanshan Liu (University of science and technology of China); Yike Guo (Hong Kong University of Science and Technology); Jie Chen (Hong Kong Baptist University) |
ICLR 2023 |
Improving a Shoreline Forecasting Model with Symbolic Regression
(Papers Track)
Abstract and authors: (click to expand)Abstract: Given the current context of climate change and the increasing population densities at coastal zones around the globe, there is an increasing need to be able to predict the development of our coasts. Recent advances in artificial intelligence allow for automatic analysis of observational data. Symbolic Regression (SR) is a type of Machine Learning algorithm that aims to find interpretable symbolic expressions that can explain relations in the data. In this work, we aim to study the problem of forecasting shoreline change using SR. We make use of Cartesian Genetic Programming (CGP) in order to encode and improve upon ShoreFor, a physical shoreline prediction model. During training, CGP individuals are evaluated and selected according to their predictive score at five different coastal sites. This work presents a comparison between a CGP-evolved model and the base ShoreFor model. In addition to evolution's ability to produce well-performing models, it demonstrates the usefulness of SR as a research tool to gain insight into the behaviors of shorelines in various geographical zones. Authors: Mahmoud AL NAJAR (Laboratory of Spatial Geophysics and Oceanography Studies); Rafael ALMAR (Laboratory of Spatial Geophysics and Oceanography Studies); Erwin BERGSMA (CNES); Jean-Marc DELVIT (CNES); Dennis Wilson (ISAE) |
ICLR 2023 |
Sub-seasonal to seasonal forecasts through self-supervised learning
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Sub-seasonal to seasonal (S2S) weather forecasts are an important decision- making tool that informs economical and logistical planning in agriculture, energy management, and disaster mitigation. They are issued on time scales of weeks to months and differ from short-term weather forecasts in two important ways: (i) the dynamics of the atmosphere on these timescales can be described only statistically and (ii) these dynamics are characterized by large-scale phenomena in both space and time. While deep learning (DL) has shown promising results in short-term weather forecasting, DL-based S2S forecasts are challenged by comparatively small volumes of available training data and large fluctuations in predictability due to atmospheric conditions. In order to develop more reliable S2S predictions that leverage current advances in DL, we propose to utilize the masked auto-encoder (MAE) framework to learn generic representations of large-scale atmospheric phenomena from high resolution global data. Besides exploring the suitability of the learned representations for S2S forecasting, we will also examine whether they account for climatic phenomena (e.g., the Madden-Julian Oscillation) that are known to increase predictability on S2S timescales. Authors: Jannik Thuemmel (University of Tuebingen); Felix Strnad (Potsdam Institute for Climate Impact Research); Jakob Schlör (Eberhard Karls Universität Tübingen); Martin V. Butz (University of Tübingen); Bedartha Goswami (University of Tübingen) |
ICLR 2023 |
Bayesian Inference of Severe Hail in Australia
(Papers Track)
Abstract and authors: (click to expand)Abstract: Severe hailstorms are responsible for some of the most costly insured weather events in Australia and can cause significant damage to homes, businesses, and agriculture. However their response to climate change remains uncertain, in large part due to the challenges of observing severe hailstorms. We propose a novel Bayesian approach which explicitly models known biases and uncertainties of current hail observations to produce more realistic estimates of severe hail risk from existing observations. Training this model on data from south-east Queensland, Australia, suggests that previous analyses of severe hail that did not account for this uncertainty may produce poorly calibrated risk estimates. Preliminary evaluation on withheld data confirms that our model produces well-calibrated probabilities and is applicable out of sample. Whilst developed for hail, we highlight also the generality of our model and its potential applications to other severe weather phenomena and areas of climate change adaptation and mitigation. Authors: Isabelle C Greco (University of New South Wales); Steven Sherwood (University of New South Wales); Timothy Raupach (University of New South Wales); Gab Abramowitz (University of New South Wales) |
ICLR 2023 |
Modelling Atmospheric Dynamics with Spherical Fourier Neural Operators
(Papers Track)
Abstract and authors: (click to expand)Abstract: Fourier Neural Operators (FNOs) have established themselves as an efficient method for learning resolution-independent operators in a wide range of scientific machine learning applications. This can be attributed to their ability to effectively model long-range dependencies in spatio-temporal data through computationally ef- ficient global convolutions. However, the use of discrete Fourier transforms (DFTs) in FNOs leads to spurious artifacts and pronounced dissipation when applied to spherical coordinates, due to the incorrect assumption of flat geometry. To ad- dress the issue, we introduce Spherical FNOs (SFNOs), which use the generalized Fourier transform for learning operators on spherical geometries. We demonstrate the effectiveness of the method for forecasting atmospheric dynamics, producing stable auto-regressive results for a simulated time of one year (1,460 steps) while retaining physically plausible dynamics. This development has significant implica- tions for machine learning-based climate dynamics emulation, which could play a crucial role in accelerating our response to climate change. Authors: Boris Bonev (NVIDIA); Thorsten Kurth (Nvidia); Christian Hundt (NVIDIA AI Technology Center); Jaideep Pathak (NVIDIA Corporation); Maximilian Baust (NVIDIA); Karthik Kashinath (NVIDIA); Anima Anandkumar (NVIDIA/Caltech) |
ICLR 2023 |
Understanding forest resilience to drought with Shapley values
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Increases in drought frequency, intensity, and duration due to climate change are threatening forests around the world. Climate-driven tree mortality is associated with devastating ecological and societal consequences, including the loss of carbon sequestration, habitat provisioning, and water filtration services. A spatially fine-grained understanding of the site characteristics making forests more resilient to drought is still lacking. Furthermore, the complexity of drought effects on forests, which can be cumulative and delayed, demands investigation of the most appropriate drought indices. In this study, we aim to gain a better understanding of the temporal and spatial drivers of drought-induced changes in forest vitality using Shapley values, which allow for the relevance of predictors to be quantified locally. A better understanding of the contribution of meteorological and environmental factors to trees’ response to drought can support forest managers aiming to make forests more climate-resilient. Authors: Stenka Vulova (Technische Universität Berlin); Alby Duarte Rocha (Technische Universität Berlin); Akpona Okujeni (Humboldt-Universität zu Berlin); Johannes Vogel (Freie Universität Berlin); Michael Förster (Technische Universität Berlin); Patrick Hostert (Humboldt-Universität zu Berlin); Birgit Kleinschmit (Technische Universität Berlin) |
ICLR 2023 |
Improving the spatial accuracy of extreme tropical cyclone rainfall in ERA5 using deep learning
(Papers Track)
Abstract and authors: (click to expand)Abstract: We propose a novel method for the bias adjustment and post-processing of gridded rainfall data products. Our method uses U-Net (a deep convolutional neural network) as a backbone, and a novel loss function given by the combination of a pixelwise bias component (Mean Absolute Error) and a spatial accuracy component (Fractions Skill Score). We evaluate the proposed approach by adjusting extreme rainfall from the popular ERA5 reanalysis dataset, using the multi-source observational dataset MSWEP as a target. We focus on a sample of extreme rainfall events induced by tropical cyclones and show that the proposed method significantly reduces both the MAE (by 16\%) and FSS (by 53\%) of ERA5. Authors: Guido Ascenso (Politecnico di Milano); Andrea Ficchì (Politecnico di Milano); Matteo Giuliani (Politecnico di Milano); Leone Cavicchia (Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)); Enrico Scoccimarro (Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)); Andrea Castelletti (Politecnico di Milano) |
ICLR 2023 |
EfficientTempNet: Temporal Super-Resolution of Radar Rainfall
(Papers Track)
Abstract and authors: (click to expand)Abstract: Rainfall data collected by various remote sensing instruments such as radars or satellites has different space-time resolutions. This study aims to improve the temporal resolution of radar rainfall products to help with more accurate climate change modeling and studies. In this direction, we introduce a solution based on EfficientNetV2, namely EfficientTempNet, to increase the temporal resolution of radar-based rainfall products from 10 minutes to 5 minutes. We tested EfficientRainNet over a dataset for the state of Iowa, US, and compared its performance to three different baselines to show that EfficientTempNet presents a viable option for better climate change monitoring. Authors: Bekir Z Demiray (University of Iowa); Muhammed A Sit (The University of Iowa); Ibrahim Demir (University of Iowa) |
ICLR 2023 |
On the impact of small-data diversity on forecasts: evidence from meteorologically-driven electricity demand in Mediterranean zones.
(Papers Track)
Abstract and authors: (click to expand)Abstract: In this paper, we compare the improvement of probabilistic electricity demand forecasts for three specific coastal and island regions using raw and pre-computed meteorological features based on empirically-tested formulations drawn from climate science literature. Typically for the general task of time-series forecasting with strong weather/climate drivers, go-to models like the Autoregressive Integrated Moving Average (ARIMA) model are built with assumptions of how independent variables will affect a dependent one and are at best encoded with a handful of exogenous features with known impact. Depending on the geographical region and/or cultural practices of a population, such a selection process may yield a non-optimal feature set which would ultimately drive a weak impact on underline demand forecasts. The aim of this work is to assess the impact of a documented set of meteorological features on electricity demand using deep learning models in comparative studies. Leveraging the defining computational architecture of the Temporal Fusion Transformer (TFT), we discover the unimportance of weather features for improving probabilistic forecasts for the targeted regions. However, through experimentation, we discover that the more stable electricity demand of the coastal Mediterranean regions, the Ceuta and Melilla autonomous cities in Morocco, improved the forecast accuracy of the strongly tourist-driven electricity demand for the Balearic islands located in Spain during the time of travel restrictions (i.e., during COVID19 (2020))--a root mean squared error (RMSE) from ~0.090 to ~0.012 with a substantially improved 10th/90th quantile bounding. Authors: Reginald Bryant (IBM Research - Africa); Julian Kuehnert (IBM Research) |
NeurIPS 2022 |
Deep learning for downscaling tropical cyclone rainfall
(Papers Track)
Abstract and authors: (click to expand)Abstract: Flooding is often the leading cause of mortality and damages from tropical cyclones. With rainfall from tropical cyclones set to rise under global warming, better estimates of extreme rainfall are required to better support resilience efforts. While high resolution climate models capture tropical cyclone statistics well, they are computationally expensive leading to a trade-off between accuracy and generating enough ensemble members to generate sufficient high impact, low probability events. Often, downscaling models are used as a computationally cheaper alternative. Here, we develop and evaluate a set of deep learning models for downscaling tropical cyclone rainfall for more robust risk analysis. Authors: Emily Vosper (University of Bristol); Lucy Harris (University of Oxford); Andrew McRae (University of Oxford); Laurence Aitchison (University of Bristol); Peter Watson (Bristol); Raul Santos Rodriguez (University of Bristol); Dann Mitchell (University of Bristol) |
NeurIPS 2022 |
Deep Hydrology: Hourly, Gap-Free Flood Maps Through Joint Satellite and Hydrologic Modelling
(Papers Track)
Abstract and authors: (click to expand)Abstract: Climate change-driven weather disasters are rapidly increasing in both frequency and magnitude. Floods are the most damaging of these disasters, with approximately 1.46 billion people exposed to inundation depths of over 0.15m, a significant life and livelihood risk. Accurate knowledge of flood-extent for ongoing and historical events facilitates climate adaptation in flood-prone communities by enabling near real-time disaster monitoring to support planning, response, and relief during these extreme events. Satellite observations can be used to derive flood-extent maps directly; however, these observations are impeded by cloud and canopy cover, and can be very infrequent and hence miss the flood completely. In contrast, physically-based inundation models can produce spatially complete event maps but suffer from high uncertainty if not frequently calibrated with expensive land and infrastructure surveys. In this study, we propose a deep learning approach to reproduce satellite-observed fractional flood-extent maps given dynamic state variables from hydrologic models, fusing information contained within the states with direct observations from satellites. Our model has an hourly temporal resolution, contains no cloud-gaps, and generalizes to watersheds across the continental United States with a 6% error on held-out areas that never flooded before. We further demonstrate through a case study in Houston, Texas that our model can distinguish tropical cyclones that caused flooding from those that did not within two days of landfall, thereby providing a reliable source for flood-extent maps that can be used by disaster monitoring services. Authors: Tanya Nair (Cloud To Street); Veda Sunkara (Cloud to Street); Jonathan Frame (Cloud to Street); Philip Popien (Cloud to Street); Subit Chakrabarti (Cloud To Street) |
NeurIPS 2022 |
Machine learning emulation of a local-scale UK climate model
(Papers Track)
Abstract and authors: (click to expand)Abstract: Climate change is causing the intensification of rainfall extremes. Precipitation projections with high spatial resolution are important for society to prepare for these changes, e.g. to model flooding impacts. Physics-based simulations for creating such projections are very computationally expensive. This work demonstrates the effectiveness of diffusion models, a form of deep generative models, for generating much more cheaply realistic high resolution rainfall samples for the UK conditioned on data from a low resolution simulation. We show for the first time a machine learning model that is able to produce realistic high-resolution rainfall predictions based on a physical model that resolves atmospheric convection, a key process behind extreme rainfall. By adding self-learnt, location-specific information to low resolution relative vorticity, quantiles and time-mean of the samples match well their counterparts from the high-resolution simulation. Authors: Henry Addison (University of Bristol); Elizabeth Kendon (Met Office Hadley Centre); Suman Ravuri (DeepMind); Laurence Aitchison (University of Bristol); Peter Watson (Bristol) |
NeurIPS 2022 |
Bridging the Microwave Data Gap; Using Bayesian Deep Learning to “See” the Unseen
(Papers Track)
Abstract and authors: (click to expand)Abstract: Having microwave data with the spatial and temporal resolution of infrared data would provide a large positive impact on many climate and weather applications. We demonstrate that Bayesian deep learning is a promising technique for both creating and improving synthetic microwave data from infrared data. We report 0.7% mean absolute percentage error for 183+/-3 GHz microwave brightness temperature and uncertainty metrics and find that more training data is needed to achieve improved performance at 166 GHz, 37 GHz, and 23 GHz. Analysis of the spatial distribution of uncertainty reveals that additional cloud data will provide the greatest increase in skill, which will potentially allow for generation of many secondary products derived from microwave data in the future. Authors: Pedro Ortiz (Naval Postgraduate School); Eleanor Casas (Naval Postgraduate School); Marko Orescanin (Naval Postgraduate School); Scott Powell (Naval Postgraduate School) |
NeurIPS 2022 |
Forecasting European Ozone Air Pollution With Transformers
(Papers Track)
Abstract and authors: (click to expand)Abstract: Surface ozone is an air pollutant that contributes to hundreds of thousands of premature deaths annually. Accurate short-term ozone forecasts may allow improved policy to reduce the risk to health, such as air quality warnings. However, forecasting ozone is a difficult problem, as surface ozone concentrations are controlled by a number of physical and chemical processes which act on varying timescales. Accounting for these temporal dependencies appropriately is likely to provide more accurate ozone forecasts. We therefore deploy a state-of-the-art transformer-based model, the Temporal Fusion Transformer, trained on observational station data from three European countries. In four-day test forecasts of daily maximum 8-hour ozone, the novel approach is highly skilful (MAE = 4.6 ppb, R2 = 0.82), and generalises well to two European countries unseen during training (MAE = 4.9 ppb, R2 = 0.79). The model outperforms standard machine learning models on our data, and compares favourably to the published performance of other deep learning architectures tested on different data. We illustrate that the model pays attention to physical variables known to control ozone concentrations, and that the attention mechanism allows the model to use relevant days of past ozone concentrations to make accurate forecasts. Authors: Seb Hickman (University of Cambridge); Paul Griffiths (University of Cambridge); Alex Archibald (University of Cambridge); Peer Nowack (Imperial College London); Elie Alhajjar (USMA) |
NeurIPS 2022 |
Exploring Randomly Wired Neural Networks for Climate Model Emulation
(Papers Track)
Abstract and authors: (click to expand)Abstract: Exploring the climate impacts of various anthropogenic emissions scenarios is key to making informed decisions for climate change mitigation and adaptation. State-of-the-art Earth system models can provide detailed insight into these impacts, but have a large associated computational cost on a per-scenario basis. This large computational burden has driven recent interest in developing cheap machine learning models for the task of climate model emulation. In this manuscript, we explore the efficacy of randomly wired neural networks for this task. We describe how they can be constructed and compare them to their standard feedforward counterparts using the ClimateBench dataset. Specifically, we replace the dense layers in multilayer perceptrons, convolutional neural networks, and convolutional long short-term memory networks with randomly wired ones and assess the impact on model performance for models with 1 million and 10 million parameters. We find average performance improvements of 4.2% across model complexities and prediction tasks, with substantial performance improvements of up to 16.4% in some cases. Furthermore, we find no significant difference in prediction speed between networks with standard feedforward dense layers and those with randomly wired layers. These findings indicate that randomly wired neural networks may be suitable direct replacements for traditional dense layers in many standard models. Authors: William J Yik (Harvey Mudd College); Sam J Silva (The University of Southern California); Andrew Geiss (Pacific Northwest National Laboratory); Duncan Watson-Parris (University of Oxford) |
NeurIPS 2022 |
Identifying Compound Climate Drivers of Forest Mortality with β-VAE
(Papers Track)
Abstract and authors: (click to expand)Abstract: Climate change is expected to lead to higher rates of forest mortality. Forest mortality is a complex phenomenon driven by the interaction of multiple climatic variables at multiple temporal scales, further modulated by the current state of the forest (e.g. age, stem diameter, and leaf area index). Identifying the compound climate drivers of forest mortality would greatly improve understanding and projections of future forest mortality risk. Observation data are, however, limited in accuracy and sample size, particularly in regard to forest state variables and mortality events. In contrast, simulations with state-of-the-art forest models enable the exploration of novel machine learning techniques for associating forest mortality with driving climate conditions. Here we simulate 160,000 years of beech, pine and spruce forest dynamics with the forest model FORMIND. We then apply β-VAE to learn disentangled latent representations of weather conditions and identify those that are most likely to cause high forest mortality. The learned model successfully identifies three characteristic climate representations that can be interpreted as different compound drivers of forest mortality. Authors: Mohit Anand (Helmholtz Centre for Environmental Research - UFZ); Lily-belle Sweet (Helmholtz Centre for Environmental Research - UFZ); Gustau Camps-Valls (Universitat de València); Jakob Zscheischler (Helmholtz Centre for Environmental Research - UFZ) |
NeurIPS 2022 |
Hybrid Recurrent Neural Network for Drought Monitoring
(Papers Track)
Abstract and authors: (click to expand)Abstract: Droughts are pervasive hydrometeorological phenomena and global hazards, whose frequency and intensity are expected to increase in the context of climate change. Drought monitoring is of paramount relevance. Here we propose a hybrid model for drought detection that integrates both climatic indices and data-driven models in a hybrid deep learning approach. We exploit time-series of multi-scale Standardized Precipitation Evapotranspiration Index together with precipitation and temperature as inputs. We introduce a dual-branch recurrent neural network with convolutional lateral connections for blending the data. Experimental and ablative results show that the proposed system outperforms both the considered drought index and purely data-driven deep learning models. Our results suggest the potential of hybrid models for drought monitoring and open the door to synergistic systems that learn from data and domain knowledge altogether. Authors: Mengxue Zhang (Universitat de València); Miguel-Ángel Fernández-Torres (Universitat de València); Gustau Camps-Valls (Universitat de València) |
NeurIPS 2022 |
Deep Learning for Global Wildfire Forecasting
(Papers Track)
Abstract and authors: (click to expand)Abstract: Climate change is expected to aggravate wildfire activity through the exacerbation of fire weather. Improving our capabilities to anticipate wildfires on a global scale is of uttermost importance for mitigating their negative effects. In this work, we create a global fire dataset and demonstrate a prototype for predicting the presence of global burned areas on a sub-seasonal scale with the use of segmentation deep learning models. Particularly, we present an open-access global analysis-ready datacube, which contains a variety of variables related to the seasonal and sub-seasonal fire drivers (climate, vegetation, oceanic indices, human-related variables), as well as the historical burned areas and wildfire emissions for 2001-2021. We train a deep learning model, which treats global wildfire forecasting as an image segmentation task and skillfully predicts the presence of burned areas 8, 16, 32 and 64 days ahead of time. Our work motivates the use of deep learning for global burned area forecasting and paves the way towards improved anticipation of global wildfire patterns. Authors: Ioannis Prapas (National Observatory of Athens); Akanksha Ahuja (NOA); Spyros Kondylatos (National Observatory of Athens); Ilektra Karasante (National Observatory of Athens); Lazaro Alonso (Max Planck Institute for Biogeochemistry); Eleanna Panagiotou (Harokopio University of Athens); Charalampos Davalas (Harokopio University of Athens); Dimitrios Michail (Harokopio University of Athens); Nuno Carvalhais (Max Planck Institute for Biogeochemistry); Ioannis Papoutsis (National Observatory of Athens) |
NeurIPS 2022 |
Controllable Generation for Climate Modeling
(Papers Track)
Abstract and authors: (click to expand)Abstract: Recent years have seen increased interest in modeling future climate trends, especially from the point of view of accurately predicting, understanding and mitigating downstream impacts. For instance, current state-of-the-art process-based agriculture models rely on high-resolution climate data during the growing season for accurate estimation of crop yields. However, high-resolution climate data for future climates is unavailable and needs to be simulated, and that too for multiple possible climate scenarios, which becomes prohibitively expensive via traditional methods. Meanwhile, deep generative models leveraging the expressivity of neural networks have shown immense promise in modeling distributions in high dimensions. Here, we cast the problem of simulation of climate scenarios in a generative modeling framework. Specifically, we leverage the GAN (Generative Adversarial Network) framework for simulating synthetic climate scenarios. We condition the model by quantifying the degree of ``extremeness" of the observed sample, which allows us to sample from different parts of the distribution. We demonstrate the efficacy of the proposed method on the CHIRPS precipitation dataset. Authors: Moulik Choraria (University of Illinois at Urbana-Champaign); Daniela Szwarcman (IBM Research); Bianca Zadrozny (IBM Research); Campbell D Watson (IBM Reserch); Lav Varshney (UIUC: ECE) |
NeurIPS 2022 |
A Multi-Scale Deep Learning Framework for Projecting Weather Extremes
(Papers Track)
Best Paper: ML Innovation
Abstract and authors: (click to expand)Abstract: Weather extremes are a major societal and economic hazard, claiming thousands of lives and causing billions of dollars in damage every year. Under climate change, their impact and intensity are expected to worsen significantly. Unfortunately, general circulation models (GCMs), which are currently the primary tool for climate projections, cannot characterize weather extremes accurately. To address this, we present a multi-resolution deep-learning framework that, firstly, corrects a GCM's biases by matching low-order and tail statistics of its output with observations at coarse scales; and secondly, increases the level of detail of the debiased GCM output by reconstructing the finer scales as a function of the coarse scales. We use the proposed framework to generate statistically realistic realizations of the climate over Western Europe from a simple GCM corrected using observational atmospheric reanalysis. We also discuss implications for probabilistic risk assessment of natural disasters in a changing climate. Authors: Antoine Blanchard (MIT); Nishant Parashar (Verisk Analytics); Boyko Dodov (Verisk Analytics); Christian Lessig (Otto-von-Guericke-Universitat Magdeburg); Themis Sapsis (MIT) |
NeurIPS 2022 |
Positional Encoder Graph Neural Networks for Geographic Data
(Papers Track)
Abstract and authors: (click to expand)Abstract: Modeling spatial dependencies in geographic data is of crucial importance for the modeling of our planet. Graph neural networks (GNNs) provide a powerful and scalable solution for modeling continuous spatial data. However, in the absence of further context on the geometric structure of the data, they often rely on Euclidean distances to construct the input graphs. This assumption can be improbable in many real-world settings, where the spatial structure is more complex and explicitly non-Euclidean (e.g., road networks). In this paper, we propose PE-GNN, a new framework that incorporates spatial context and correlation explicitly into the models. Building on recent advances in geospatial auxiliary task learning and semantic spatial embeddings, our proposed method (1) learns a context-aware vector encoding of the geographic coordinates and (2) predicts spatial autocorrelation in the data in parallel with the main task. We show the effectiveness of our approach on two climate-relevant regression tasks: 3d spatial interpolation and air temperature prediction. The code for this study can be accessed via: https://bit.ly/3xDpfyV. Authors: Konstantin Klemmer (Microsoft Research); Nathan S Safir (University of Georgia); Daniel B Neill (New York University) |
NeurIPS 2022 |
Evaluating Digital Tools for Sustainable Agriculture using Causal Inference
(Papers Track)
Abstract and authors: (click to expand)Abstract: In contrast to the rapid digitalization of several industries, agriculture suffers from low adoption of climate-smart farming tools. Even though AI-driven digital agriculture can offer high-performing predictive functionalities, they lack tangible quantitative evidence on their benefits to the farmers. Field experiments can derive such evidence, but are often costly and time consuming. To this end, we propose an observational causal inference framework for the empirical evaluation of the impact of digital tools on target farm performance indicators. This way, we can increase farmers' trust via enhancing the transparency of the digital agriculture market, and in turn accelerate the adoption of technologies that aim to increase productivity and secure a sustainable and resilient agriculture against a changing climate. As a case study, we perform an empirical evaluation of a recommendation system for optimal cotton sowing, which was used by a farmers' cooperative during the growing season of 2021. We leverage agricultural knowledge to develop the causal graph of the farm system, we use the back-door criterion to identify the impact of recommendations on the yield and subsequently we estimate it using several methods on observational data. The results showed that a field sown according to our recommendations enjoyed a significant increase in yield 12% to 17%. Authors: Ilias Tsoumas (National Observatory of Athens); Georgios Giannarakis (National Observatory of Athens); Vasileios Sitokonstantinou (National Observatory of Athens); Alkiviadis Marios Koukos (National Observatory of Athens); Dimitra A Loka (Hellenic Agricultural Organization ELGO DIMITRA); Nikolaos S Bartsotas (National Observatory of Athens); Charalampos Kontoes (National Observatory of Athens); Ioannis N Athanasiadis (Wageningen University and Research) |
NeurIPS 2022 |
Flood Prediction with Graph Neural Networks
(Papers Track)
Abstract and authors: (click to expand)Abstract: Climate change is increasing the frequency of flooding around the world. As a consequence, there is a growing demand for effective flood prediction. Machine learning is a promising alternative to hydrodynamic models for flood prediction. However, existing approaches focus on capturing either the spatial or temporal flood patterns using CNNs or RNNs, respectively. In this work, we propose FloodGNN, which is a graph neural network (GNN) for flood prediction. Compared to existing approaches, FloodGNN (i) employs a graph-based model (GNN); (ii) operates on both spatial and temporal dimensions; and (iii) processes the water flow velocities as vector features, instead of scalar features. Experiments show that FloodGNN achieves promising results, outperforming an RNN-based baseline. Authors: Arnold N Kazadi (Rice University); James Doss-Gollin (Rice University); Antonia Sebastian (UNC Chapel Hill); Arlei Silva (Rice University) |
NeurIPS 2022 |
DL-Corrector-Remapper: A grid-free bias-correction deep learning methodology for data-driven high-resolution global weather forecasting
(Papers Track)
Abstract and authors: (click to expand)Abstract: Data-driven models, such as FourCastNet (FCN), have shown exemplary performance in high-resolution global weather forecasting. This performance, however, is based on supervision on mesh-gridded weather data without the utilization of raw climate observational data, the gold standard ground truth. In this work we develop a methodology to correct, remap, and fine-tune gridded uniform forecasts of FCN so it can be directly compared against observational ground truth, which is sparse and non-uniform in space and time. This is akin to bias-correction and post-processing of numerical weather prediction (NWP), a routine operation at meteorological and weather forecasting centers across the globe. The Adaptive Fourier Neural Operator (AFNO) architecture is used as the backbone to learn continuous representations of the atmosphere. The spatially and temporally non-uniform output is evaluated by the non-uniform discrete inverse Fourier transform (NUIDFT) given the output query locations. We call this network the Deep-Learning-Corrector-Remapper (DLCR). The improvement in DLCR’s performance against the gold standard ground truth over the baseline’s performance shows its potential to correct, remap, and fine-tune the mesh-gridded forecasts under the supervision of observations. Authors: Tao Ge (Washington University in St. Louis); Jaideep Pathak (NVIDIA Corporation); Akshay Subramaniam (NVIDIA); Karthik Kashinath (NVIDIA) |
NeurIPS 2022 |
Adaptive Bias Correction for Improved Subseasonal Forecasting
(Papers Track)
Abstract and authors: (click to expand)Abstract: Subseasonal forecasting — predicting temperature and precipitation 2 to 6 weeks ahead — is critical for effective water allocation, wildfire management, and drought and flood mitigation. Recent international research efforts have advanced the subseasonal capabilities of operational dynamical models, yet temperature and precipitation prediction skills remains poor, partly due to stubborn errors in representing atmospheric dynamics and physics inside dynamical models. To counter these errors, we introduce an adaptive bias correction (ABC) method that combines state-of-the-art dynamical forecasts with observations using machine learning. When applied to the leading subseasonal model from the European Centre for Medium-Range Weather Forecasts (ECMWF), ABC improves temperature forecasting skill by 60-90% and precipitation forecasting skill by 40-69% in the contiguous U.S. We couple these performance improvements with a practical workflow, based on Cohort Shapley, for explaining ABC skill gains and identifying higher-skill windows of opportunity based on specific climate conditions. Authors: Soukayna Mouatadid (University of Toronto); Paulo Orenstein (IMPA); Genevieve E Flaspohler (MIT); Judah Cohen (AER); Miruna Oprescu (Cornell University); Ernest Fraenkel (MIT); Lester Mackey (Microsoft Research New England) |
NeurIPS 2022 |
Learning to forecast vegetation greenness at fine resolution over Africa with ConvLSTMs
(Papers Track)
Abstract and authors: (click to expand)Abstract: Forecasting the state of vegetation in response to climate and weather events is a major challenge. Its implementation will prove crucial in predicting crop yield, forest damage, or more generally the impact on ecosystems services relevant for socio-economic functioning, which if absent can lead to humanitarian disasters. Vegetation status depends on weather and environmental conditions that modulate complex ecological processes taking place at several timescales. Interactions between vegetation and different environmental drivers express responses at instantaneous but also time-lagged effects, often showing an emerging spatial context at landscape and regional scales. We formulate the land surface forecasting task as a strongly guided video prediction task where the objective is to forecast the vegetation developing at very fine resolution using topography and weather variables to guide the prediction. We use a Convolutional LSTM (ConvLSTM) architecture to address this task and predict changes in the vegetation state in Africa using Sentinel-2 satellite NDVI, having ERA5 weather reanalysis, SMAP satellite measurements, and topography (DEM of SRTMv4.1) as variables to guide the prediction. Ours results highlight how ConvLSTM models can not only forecast the seasonal evolution of NDVI at high resolution, but also the differential impacts of weather anomalies over the baselines. The model is able to predict different vegetation types, even those with very high NDVI variability during target length. Authors: Claire Robin (Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena, Germany); Christian Requena-Mesa (Computer Vision Group, Friedrich Schiller University Jena; DLR Institute of Data Science, Jena; Max Planck Institute for Biogeochemistry, Jena); Vitus Benson (Max-Planck-Institute for Biogeochemistry); Jeran Poehls (Max-Planck-Institute for Biogeochemistry); Lazaro Alonzo (Max-Planck-Institute for Biogeochemistry Max-Planck-Institute for Biogeochemistry); Nuno Carvalhais (Max-Planck-Institute for Biogeochemistry); Markus Reichstein (Max Planck Institute for Biogeochemistry, Jena; Michael Stifel Center Jena for Data-Driven and Simulation Science, Jena) |
NeurIPS 2022 |
Generative Modeling of High-resolution Global Precipitation Forecasts
(Papers Track)
Abstract and authors: (click to expand)Abstract: Forecasting global precipitation patterns and, in particular, extreme precipitation events is of critical importance to preparing for and adapting to climate change. Making accurate high-resolution precipitation forecasts using traditional physical models remains a major challenge in operational weather forecasting as they incur substantial computational costs and struggle to achieve sufficient forecast skill. Recently, deep-learning-based models have shown great promise in closing the gap with numerical weather prediction (NWP) models in terms of precipitation forecast skill, opening up exciting new avenues for precipitation modeling. However, it is challenging for these deep learning models to fully resolve the fine-scale structures of precipitation phenomena and adequately characterize the extremes of the long-tailed precipitation distribution. In this work, we present several improvements to the architecture and training process of a current state-of-the art deep learning precipitation model (FourCastNet) using a novel generative adversarial network (GAN) to better capture fine scales and extremes. Our improvements achieve superior performance in capturing the extreme percentiles of global precipitation, while comparable to state-of-the-art NWP models in terms of forecast skill at 1--2 day lead times. Together, these improvements set a new state-of-the-art in global precipitation forecasting. Authors: James Duncan (University of California, Berkeley); Peter Harrington (Lawrence Berkeley National Laboratory (Berkeley Lab)); Shashank Subramanian (Lawrence Berkeley National Laboratory) |
NeurIPS 2022 |
Towards the Automatic Analysis of Ceilometer Backscattering Profiles using Unsupervised Learning
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Ceilometers use a laser beam to capture certain phenomena in the atmosphere like clouds, precipitation, or aerosol layers. These measurements can be visualized in so-called quick looks that at the moment are mostly analyzed manually by meteorology experts. In this work, we illustrate the path towards the automatic analysis of quick looks by using a hybrid approach combining an image segmentation algorithm with unsupervised representation learning and clustering. We present a first proof of concept and give an outlook on possible future work. Authors: Michael Dammann (HAW Hamburg); Ina Mattis (Deutscher Wetterdienst); Michael Neitzke (HAW Hamburg); Ralf Möller (University of Lübeck) |
NeurIPS 2022 |
Detecting Floods from Cloudy Scenes: A Fusion Approach Using Sentinel-1 and Sentinel-2 Imagery
(Proposals Track)
Abstract and authors: (click to expand)Abstract: As the result of climate change, extreme flood events are becoming more frequent. To better respond to such disasters, and to test and calibrate flood models, we need accurate real-world data on flooding extent. Detection of floods from remote sensed imagery suffers from a widespread problem: clouds block flood scenes in images, leading to degraded and fragmented flood datasets. To address this challenge, we propose a workflow based on U-Net, and a dataset that detects flood in cloud-prone areas by fusing information from the Sentinel-1 and Sentinel-2 satellites. The expected result will be a reliable and detailed catalogue of flood extents and how they change through time, allowing us to better understand flooding in different morphological settings and climates. Authors: Qiuyang Chen (University of Edinburgh); Xenofon Karagiannis (Earth-i Ltd.); Simon M. Mudd (University of Edinburgh) |
NeurIPS 2022 |
Urban Heat Island Detection and Causal Inference Using Convolutional Neural Networks
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Compared to rural areas, urban areas experience higher temperatures for longer periods of time because of the urban heat island (UHI) effect. This increased heat stress leads to greater mortality, increased energy demand, regional changes to precipitation patterns, and increased air pollution. Urban developers can minimize the UHI effect by incorporating features that promote air flow and heat dispersion (e.g., increasing green space). However, understanding which urban features to implement is complex, as local meteorology strongly dictates how the environment responds to changes in urban form. In this proposal we describe a methodology for estimating the causal relationship between changes in urban form and changes in the UHI effect. Changes in urban form and temperature changes are measured using convolutional neural networks, and a causal inference matching approach is proposed to estimate causal relationships. The success of this methodology will enable urban developers to implement city-specific interventions to mitigate the warming planet's impact on cities. Authors: Zachary D Calhoun (Duke University); Ziyang Jiang (Duke University); Mike Bergin (Duke University); David Carlson (Duke University) |
NeurIPS 2022 |
Forecasting Global Drought Severity and Duration Using Deep Learning
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Drought detection and prediction is challenging due to the slow onset of the event and varying degrees of dependence on numerous physical and socio-economic factors that differentiate droughts from other natural disasters. In this work, we propose DeepXD (Deep learning for Droughts), a deep learning model with 26 physics-informed input features for SPI (Standardised Precipitation Index) forecasting to identify and classify droughts using monthly oceanic indices, global meteorological and vegetation data, location (latitude, longitude) and land cover for the years 1982 to 2018. In our work, we propose extracting features by considering the atmosphere and land moisture and energy budgets and forecasting global droughts on a seasonal and an annual scale at 1, 3, 6, 9, 12 and 24 months lead times. SPI helps us to identify the severity and the duration of the drought to classify them as meteorological, agricultural and hydrological. Authors: Akanksha Ahuja (NOA); Xin Rong Chua (Centre for Climate Research Singapore) |
NeurIPS 2022 |
Disaster Risk Monitoring Using Satellite Imagery
(Tutorials Track)
Abstract and authors: (click to expand)Abstract: Natural disasters such as flood, wildfire, drought, and severe storms wreak havoc throughout the world, causing billions of dollars in damages, and uprooting communities, ecosystems, and economies. Unfortunately, flooding events are on the rise due to climate change and sea level rise. The ability to detect and quantify them can help us minimize their adverse impacts on the economy and human lives. Using satellites to study flood is advantageous since physical access to flooded areas is limited and deploying instruments in potential flood zones can be dangerous. We are proposing a hands-on tutorial to highlight the use of satellite imagery and computer vision to study natural disasters. Specifically, we aim to demonstrate the development and deployment of a flood detection model using Sentinel-1 satellite data. The tutorial will cover relevant fundamental concepts as well as the full development workflow of a deep learning-based application. We will include important considerations such as common pitfalls, data scarcity, augmentation, transfer learning, fine-tuning, and details of each step in the workflow. Importantly, the tutorial will also include a case study on how the application was used by authorities in response to a flood event. We believe this tutorial will enable machine learning practitioners of all levels to develop new technologies that tackle the risks posed by climate change. We expect to deliver the below learning outcomes: • Develop various deep learning-based computer vision solutions using hardware-accelerated open-source tools that are optimized for real-time deployment • Create an optimized pipeline for the machine learning development workflow • Understand different performance metrics for model evaluation that are relevant for real world datasets and data imbalances • Understand the public sector’s efforts to support climate action initiatives and point out where the audience can contribute Authors: Kevin Lee (NVIDIA); Siddha Ganju (NVIDIA); Edoardo Nemni (UNOSAT) |
NeurIPS 2022 |
Machine Learning for Predicting Climate Extremes
(Tutorials Track)
Abstract and authors: (click to expand)Abstract: Climate change has led to a rapid increase in the occurrence of extreme weather events globally, including floods, droughts, and wildfires. In the longer term, some regions will experience aridification while others will risk sinking due to rising sea levels. Typically, such predictions are done via weather and climate models that simulate the physical interactions between the atmospheric, oceanic, and land surface processes that operate at different scales. Due to the inherent complexity, these climate models can be inaccurate or computationally expensive to run, especially for detecting climate extremes at high spatiotemporal resolutions. In this tutorial, we aim to introduce the participants to machine learning approaches for addressing two fundamental challenges. We will walk the participants through a hands-on tutorial for predicting climate extremes relating to temperature and precipitation in 2 setups: (1) temporal forecasting: the goal is to predict climate variables into the future (both direct single step approaches and iterative approaches that roll out the model for several timesteps), and (2) spatial downscaling: the goal is to learn a mapping that transforms low-resolution outputs of climate models into high-resolution regional forecasts. Through introductory presentations and colab notebooks, we aim to expose the participants to (a) APIs for accessing and navigating popular repositories that host global climate data, such as the Copernicus data store, (b) identifying relevant datasets, including auxiliary data (e.g., other climate variables such as geopotential), (c) scripts for downloading and preprocessing relevant datasets, (d) algorithms for training machine learning models, (d) metrics for evaluating model performance, and (e) visualization tools for both the dataset and predicted outputs. The coding notebooks will be in Python. No prior knowledge of climate science is required. Authors: Hritik Bansal (UCLA); Shashank Goel (University of California Los Angeles); Tung Nguyen (University of California, Los Angeles); Aditya Grover (UCLA) |
NeurIPS 2022 |
FourCastNet: A practical introduction to a state-of-the-art deep learning global weather emulator
(Tutorials Track)
Abstract and authors: (click to expand)Abstract: Accurate, reliable, and efficient means of forecasting global weather patterns are of paramount importance to our ability to mitigate and adapt to climate change. Currently, real-time weather forecasting requires repeated numerical simulation and data assimilation cycles on dedicated supercomputers, which restricts the ability to make reliable, high-resolution forecasts to a handful of organizations. However, recent advances in deep learning, specifically the FourCastNet model, have shown that data-driven approaches can forecast important atmospheric variables with excellent skill and comparable accuracy to standard numerical methods, but at orders-of-magnitude lower computational and energy cost during inference, enabling larger ensembles for better probabilistic forecasts. In this tutorial, we demonstrate various applications of FourCastNet for high-resolution global weather forecasting, with examples including real-time forecasts, uncertainty quantification for extreme events, and adaptation to specific variables or localized regions of interest. The tutorial will provide examples that will demonstrate the general workflow for formatting and working with global atmospheric data, running autoregressive inference to obtain daily global forecasts, saving/visualizing model predictions of atmospheric events such as hurricanes and atmospheric rivers, and computing quantitative evaluation metrics for weather models. The exercises will primarily use PyTorch and do not require detailed understanding of the climate and weather system. With this tutorial, we hope to equip attendees with basic knowledge about building deep learning-based weather model surrogates and obtaining forecasts of crucial atmospheric variables using these models. Authors: Jaideep Pathak (NVIDIA Corporation); Shashank Subramanian (Lawrence Berkeley National Laboratory); Peter Harrington (Lawrence Berkeley National Laboratory (Berkeley Lab)); Thorsten Kurth (Nvidia); Andre Graubner (Nvidia); Morteza Mardani (NVIDIA Corporation); David M. Hall (NVIDIA); Karthik Kashinath (Lawrence Berkeley National Laboratory); Anima Anandkumar (NVIDIA/Caltech) |
AAAI FSS 2022 |
Imputation of Missing Streamflow Data at Multiple Gauging Stations in Benin Republic
Abstract and authors: (click to expand)Abstract: Streamflow observation data is vital for flood monitoring, agricultural, and settlement planning. However, such streamflow data are commonly plagued with missing observations due to various causes such as harsh environmental conditions and constrained operational resources. This problem is often more pervasive in under-resourced areas such as Sub-Saharan Africa. In this work, we reconstruct streamflow time series data through bias correction of the GEOGloWS ECMWF streamflow service (GESS) forecasts at ten river gauging stations in Benin. We perform bias correction by fitting Quantile Mapping, Gaussian Process, and Elastic Net regression in a constrained training period. We show by simulating missingness in a testing period that GESS forecasts have a significant bias that results in low predictive skill over the ten Beninese stations. Our findings suggest that overall bias correction by Elastic Net and Gaussian Process regression achieves superior skill relative to traditional imputation by Random Forest, k-Nearest Neighbour, and GESS lookup. The findings of this work provide a basis for integrating global GESS streamflow data into operational early-warning decision-making systems (e.g., flood alert) in countries vulnerable to drought and flooding due to extreme weather events. Authors: Rendani Mbuvha (Queen Mary University of London), Julien Yise Peniel Adounkpe (International Water Management Institute (IWMI)), Wilson Tsakane Mongwe (University of Johannesburg), Mandela Houngnibo (Agence Nationale de la Météorologie du Benin Meteo Benin), Nathaniel Newlands (Summerland Research and Development Centre, Agriculture and Agri-Food Canada) and Tshilidzi Marwala (University of Johannesburg) |
ICLR 2020 |
A Machine Learning Pipeline to Predict Vegetation Health
(Papers Track)
Abstract and authors: (click to expand)Abstract: Agricultural droughts can exacerbate poverty and lead to famine. Timely distribution of disaster relief funds is essential to help minimise the impact of drought. Indices of vegetation health are indicative of higher risk of agricultural drought, but their prediction remains challenging, particularly in Africa. Here, we present an open-source machine learning pipeline for climate-related data. Specifically, we train and analyse a recurrent model to predict pixel-wise vegetation health in Kenya. Authors: Thomas Lees (University of Oxford); Gabriel Tseng (Okra Solar); Simon Dadson (University of Oxford); Alex Hernández (University of Osnabrück); Clement G. Atzberger (University of Natural Resources and Life Sciences); Steven Reece (University of Oxford) |
ICLR 2020 |
Embedding Hard Physical Constraints in Convolutional Neural Networks for 3D Turbulence
(Papers Track)
Abstract and authors: (click to expand)Abstract: Deep learning approaches have shown much promise for climate sciences, especially in dimensionality reduction and compression of large datasets. A major issue in deep learning of climate phenomena, like geophysical turbulence, is the lack of physical guarantees. In this work, we propose a general framework to directly embed the notion of incompressible fluids into Convolutional Neural Networks, for coarse-graining of turbulence. These \textbf{physics-embedded neural networks} leverage interpretable strategies from numerical methods and computational fluid dynamics to enforce physical laws and boundary conditions by taking advantage the mathematical properties of the underlying equations. We demonstrate results on 3D fully-developed turbulence, showing that the \textit{physics-aware inductive bias} drastically improves local conservation of mass, without sacrificing performance according to several other metrics characterizing the fluid flow. Authors: Arvind T Mohan (Los Alamos National Laboratory); NIcholas Lubbers (Los Alamos National Laboratory); Daniel Livescu (Los Alamos National Laboratory); Misha Chertkov (University of Arizona) |
ICLR 2020 |
WeatherBench: A benchmark dataset for data-driven weather forecasting
(Papers Track)
Best Paper Award
Abstract and authors: (click to expand)Abstract: Accurate weather forecasts are a crucial prerequisite for climate change adaptation. Can these be provided by deep learning? First studies show promise, but the lack of a common dataset and evaluation metrics make inter-comparison between the proposed models difficult. In fact, despite the recent research surge in data-driven weather forecasting, there is currently no standard approach for evaluating the proposed models. Here we introduce WeatherBench, a benchmark dataset for data-driven medium-range weather forecasting. We provide data derived from an archive of assimilated earth observations for the last 40 years that has been processed to facilitate the use in machine learning models. We propose a simple and clear evaluation metric which will enable a direct comparison between different proposed methods. Further, we provide baseline scores from simple linear regression techniques, purely physical forecasting models as well as existing deep learning weather forecasting models. All data and code are made publicly available along with tutorials for getting started. We believe WeatherBench will provide a useful and reproducible way of evaluating data-driven weather forecasting models and we hope that it will accelerate research in this direction. Authors: Stephan Rasp (Technical University of Munich); Soukayna Mouatadid (University of Toronto); Peter Dueben (European Centre for Medium-Range Weather Forecasts (ECMWF)); Sebastian Scher (Stockholm University); Jonathan Weyn (University of Washington); Nils Thuerey (nils.thuerey@tum.de) |
ICLR 2020 |
SMArtCast: Predicting soil moisture interpolations into the future using Earth observation data in a deep learning framework
(Papers Track)
Abstract and authors: (click to expand)Abstract: Soil moisture is critical component of crop health and monitoring it can enable further actions for increasing yield or preventing catastrophic die off. As climate change increases the likelihood of extreme weather events and reduces the predictability of weather, and non-optimal soil moistures for crops may become more likely. In this work, we use a series of LSTM architectures to analyze measurements of soil moisture and vegetation indices derived from satellite imagery. The system learns to predict the future values of these measurements. These spatially sparse values and indices are used as input features to an interpolation method that infer spatially dense moisture maps at multiple depths for a future time point. This has the potential to provide advance warning for soil moistures that may be inhospitable to crops across an area with limited monitoring capacity. Authors: Conrad J Foley (Deep Planet); Sagar Vaze (deepplanet.ai); Mohamed El Amine Seddiq (Deep Planet); Aleksei Unagaev (Deep Planet); Natalia Efremova (University of Oxford) |
ICLR 2020 |
Prediction of Bayesian Intervals for Tropical Storms
(Papers Track)
Abstract and authors: (click to expand)Abstract: Building on recent research for prediction of hurricane trajectories using recurrent neural networks (RNNs), we have developed improved methods and generalized the approach to predict a confidence interval region of the trajectory utilizing Bayesian methods. Tropical storms are capable of causing severe damage, so accurately predicting their trajectories can bring significant benefits to cities and lives, especially as they grow more intense due to climate change effects. By implementing the Bayesian confidence interval using dropout in an RNN, we improve the actionability of the predictions, for example by estimating the areas to evacuate in the landfall region. We used an RNN to predict the trajectory of the storms at 6-hour intervals. We used latitude, longitude, windspeed, and pressure features from a Statistical Hurricane Intensity Prediction Scheme (SHIPS) dataset of about 500 tropical storms in the Atlantic Ocean. Our results show how neural network dropout values affect our predictions and Bayesian intervals. Authors: Max Chiswick (Independent); Sam Ganzfried (Ganzfried Research) |
ICLR 2020 |
Hurricane Nowcasting with Irregular Time-step using Neural-ODE and Video Prediction
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Fast and accurate prediction of extreme climate events is critical especially in the recent globally warming environment. Considering recent advancements in deep neural networks, it is worthwhile to tackle this problem as data-driven spatio-temporal prediction using neural networks. However, a nontrivial challenge in practice lies in irregular time gaps between which climate observation data are collected due to sensor errors and other issues. This paper proposes an approach for spatio-temporal hurricane prediction that can address this issue of irregular time gaps in collected data with a simple but robust end-to-end model based on Neural Ordinary Differential Equation and video prediction model based on Retrospective Cycle-GAN. Authors: Sunghyun Park (KAIST); Kangyeol Kim (KAIST); Sookyung Kim (Lawrence Livermore National Laboratory); Joonseok Lee (Google Research); Junsoo Lee (KAIST); Jiwoo Lee (Lawrence Livermore National Laboratory); Jaegul Choo (KAIST) |
ICLR 2020 |
Indigenous Knowledge Aware Drought Monitoring, Forecasting and Prediction Using Deep Learning Techniques
(Proposals Track)
Abstract and authors: (click to expand)Abstract: The general objective of this proposed research work is to design deep learning based hybrid comprehensive framework for drought monitoring, forecasting and prediction using scientific and indigenous knowledge as an integration of connectionist and symbolic AI. In Ethiopia, among all extreme climate events, drought is considered as the most complex phenomenon affecting the country and its impact is also high due to absence of locally grounded intelligent and explainable technology-oriented drought early warning and monitoring system. Thus, studying Ethiopic perspective of drought monitoring and prediction in line with continental and global climate change is vital for drought impact minimization and sustainable development of the country. Moreover, having technology assisted early protective, preventative action is also many times cheaper than the associated response to humanitarian crisis. Accordingly, this proposed work will have different expected outputs, including: drought risk identification, drought monitoring, drought preparedness, drought forecasting, drought mitigation, and post drought best practice recommendation models with interactive visualizations and explanations. Authors: Kidane W Degefa (Haramaya University) |
NeurIPS 2019 |
Learning to Focus and Track Hurricanes
(Papers Track)
Abstract and authors: (click to expand)Abstract: This paper tackles the task of extreme climate event tracking. We propose a simple but robust end-to-end model based on multi-layered ConvLSTMs, suitable for climate event tracking. It first learns to imprint the location and the appearance of the target at the first frame in an auto-encoding fashion. Next, the learned feature is fed to the tracking module to track the target in subsequent time frames. To tackle the data shortage problem, we propose data augmentation based on conditional generative adversarial networks. Extensive experiments show that the proposed framework significantly improves tracking performance of a hurricane tracking task over several state-of-the-art methods. Authors: Sookyung Kim (Lawrence Livermore National Laboratory); Sunghyun Park (Korea University); Sunghyo Chung (Kakao Corp.); Joonseok Lee (Google Research); Jaegul Choo (Korea University); Mr Prabhat (Lawrence Berkeley National Laboratory); Yunsung Lee (Korea University) |
NeurIPS 2019 |
Streamflow Prediction with Limited Spatially-Distributed Input Data
(Papers Track)
Abstract and authors: (click to expand)Abstract: Climate change causes more frequent and extreme weather phenomena across the globe. Accurate streamflow prediction allows for proactive and mitigative action in some of these events. As a first step towards models that predict streamflow in watersheds for which we lack ground truth measurements, we explore models that work on spatially-distributed input data. In such a scenario, input variables are more difficult to acquire, and thus models have access to limited training data. We present a case study focusing on Lake Erie, where we find that tree-based models can yield more accurate predictions than both neural and physically-based models. Authors: Martin Gauch (University of Waterloo); Juliane Mai (University of Waterloo); Shervan Gharari (University of Saskatchewan); Jimmy Lin (University of Waterloo) |
NeurIPS 2019 |
Make Thunderbolts Less Frightening — Predicting Extreme Weather Using Deep Learning
(Papers Track)
Abstract and authors: (click to expand)Abstract: Forecasting severe weather conditions is still a very challenging and computationally expensive task due to the enormous amount of data and the complexity of the underlying physics. Machine learning approaches and especially deep learning have however shown huge improvements in many research areas dealing with large datasets in recent years. In this work, we tackle one specific sub-problem of weather forecasting, namely the prediction of thunderstorms and lightning. We propose the use of a convolutional neural network architecture inspired by UNet++ and ResNet to predict thunderstorms as a binary classification problem based on satellite images and lightnings recorded in the past. We achieve a probability of detection of more than 94% for lightnings within the next 15 minutes while at the same time minimizing the false alarm ratio compared to previous approaches. Authors: Christian Schön (Saarland Informatics Campus); Jens Dittrich (Saarland University) |
NeurIPS 2019 |
DeepClimGAN: A High-Resolution Climate Data Generator
(Papers Track)
Abstract and authors: (click to expand)Abstract: Earth system models (ESMs), which simulate the physics and chemistry of the global atmosphere, land, and ocean, are often used to generate future projections of climate change scenarios. These models are far too computationally intensive to run repeatedly, but limited sets of runs are insufficient for some important applications, like adequately sampling distribution tails to characterize extreme events. As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM. Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator. In doing so, we gain the ability to produce daily weather data that is consistent with what ESM might output over any chosen scenario. In particular, the GAN is aimed at representing a joint probability distribution over space, time, and climate variables, enabling the study of correlated extreme events, such as floods, droughts, or heatwaves. Authors: Alexandra Puchko (Western Washington University); Brian Hutchinson (Western Washington University); Robert Link (Joint Global Change Research Institute) |
NeurIPS 2019 |
Machine Learning for Precipitation Nowcasting from Radar Images
(Papers Track)
Abstract and authors: (click to expand)Abstract: High-resolution nowcasting is an essential tool needed for effective adaptation to climate change, particularly for extreme weather. As Deep Learning (DL) techniques have shown dramatic promise in many domains, including the geosciences, we present an application of DL to the problem of precipitation nowcasting, i.e., high-resolution (1 km x 1 km) short-term (1 hour) predictions of precipitation. We treat forecasting as an image-to-image translation problem and leverage the power of the ubiquitous UNET convolutional neural network. We find this performs favorably when compared to three commonly used models: optical flow, persistence and NOAA's numerical one-hour HRRR nowcasting prediction. Authors: Shreya Agrawal (Google); Luke Barrington (Google); Carla Bromberg (Google); John Burge (Google); Cenk Gazen (Google); Jason Hickey (Google) |
NeurIPS 2019 |
Detecting Avalanche Deposits using Variational Autoencoder on Sentinel-1 Satellite Imagery
(Papers Track)
Abstract and authors: (click to expand)Abstract: Avalanche monitoring is a crucial safety challenge, especially in a changing climate. Remote sensing of avalanche deposits can be very useful to identify avalanche risk zones and time periods, which can in turn provide insights about the effects of climate change. In this work, we use Sentinel-1 SAR (synthetic aperture radar) data on the French Alps for the exceptional winter of 2017-18, with the goal of automatically detecting avalanche deposits. We address our problem with an unsupervised learning technique. We treat an avalanche as a rare event, or an anomaly, and we learn a variational autoencoder, in order to isolate the anomaly. We then evaluate our method on labeled test data, using an independent in-situ avalanche inventory as ground truth. Our empirical results show that our unsupervised method obtains comparable performance to a recent supervised learning approach that trained a convolutional neural network on an artificially balanced version of the same SAR data set along with the corresponding ground-truth labels. Our unsupervised approach outperforms the standard CNN in terms of balanced accuracy (63% as compared to 55%). This is a significant improvement, as it allows our method to be used in-situ by climate scientists, where the data is always very unbalanced (< 2% positives). This is the first application of unsupervised deep learning to detect avalanche deposits. Authors: Saumya Sinha (University of Colorado, Boulder); Sophie Giffard-Roisin (University of Colorado Boulder); Fatima Karbou (Meteo France); Michael Deschatres (Irstea); Nicolas Eckert (Irstea); Anna Karas (Meteo France); Cécile Coléou (Meteo France); Claire Monteleoni (University of Colorado Boulder) |
NeurIPS 2019 |
Machine Learning for Generalizable Prediction of Flood Susceptibility
(Papers Track)
Abstract and authors: (click to expand)Abstract: Flooding is a destructive and dangerous hazard and climate change appears to be increasing the frequency of catastrophic flooding events around the world. Physics-based flood models are costly to calibrate and are rarely generalizable across different river basins, as model outputs are sensitive to site-specific parameters and human-regulated infrastructure. Statistical models trained primarily from remotely-sensed Earth observation data could reduce the need for extensive in-situ measurements. In this work, we develop generalizable, multi-basin models of river flooding susceptibility using geographically-distributed data from the USGS stream gauge network. Machine learning models are trained in a supervised framework to predict two measures of flood susceptibility from a mix of river basin attributes, impervious surface cover information derived from satellite imagery, and historical records of rainfall and stream height. We report prediction performance of multiple models using precision-recall curves, and compare with performance of naive baselines. This work on multi-basin flood prediction represents a step in the direction of making flood prediction accessible to all at-risk communities. Authors: Dylan Fitzpatrick (Carnegie Mellon University); Chelsea Sidrane (Stanford University); Andrew Annex (Johns Hopkins University); Diane O'Donoghue (kx); Piotr Bilinski (University of Warsaw) |
NeurIPS 2019 |
Deep learning predictions of sand dune migration
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Climate change is making many desert regions warmer, drier, and sandier. These conditions kill vegetation, and release once-stable sand into the wind, allowing it to form dunes that threaten roads, farmland, and solar panel installations. With enough warning, people can mitigate dune damages by moving infrastructure or restoring vegetation. Current dune simulations, however, do not scale well enough to provide useful forecasts for the ~5% of Earth's land surface that is covered by mobile sands. We propose to train a deep learning simulation to emulate the output of a community-standard physics-based dune simulation. We will base the new model on a GAN-based video prediction model with an excellent track record for predicting spatio-temporal patterns to model, and use it to simulate dune topographies over time. Our preliminary work indicates that the new model will run up to ten million times faster than existing dune simulations, which would turn dune modelling from an exercise that covers a handful of dunes to a practical forecast for large desert regions. Authors: Kelly Kochanski (University of Colorado Boulder); Divya Mohan (University of California Berkeley); Jenna Horrall (James Madison University); Ghaleb Abdulla (Lawrence Livermore National Laboratory) |
NeurIPS 2019 |
Predictive Inference of a Wildfire Risk Pipeline in the United States
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Wildfires are rare events that present severe threats to life and property. Understanding their propagation is of key importance to mitigate and contain their impact, especially since climate change is increasing their occurrence. We propose an end-to-end sequential model of wildfire risk components, including wildfire location, size, duration, and risk exposure. We do so through a combination of marked spatio-temporal point processes and conditional density estimation techniques. Unlike other approaches that use regression-based methods, this approach allows both predictive accuracy and an associated uncertainty measure for each risk estimate, accounting for the uncertainty in prior model components. This is particularly beneficial for timely decision-making by different wildfire risk management stakeholders. To allow us to build our models without limiting them to a specific state or county, we have collected open wildfire and climate data for the entire continental United States. We are releasing this aggregated dataset to enable further o pen research on wildfire models at a national scale. Authors: Shamindra Shrotriya (Carnegie Mellon University); Niccolo Dalmasso (Carnegie Mellon University); Alex Reinhart (Carnegie Mellon University) |
NeurIPS 2019 |
DeepRI: End-to-end Prediction of Tropical Cyclone Rapid Intensification from Climate Data
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Predicting rapid intensification (RI) is extremely critical in tropical cyclone forecasting. Existing deep learning models achieve promising results, however still rely on hand-craft feature. We propose to design an end-to-end deep learning architecture that directly predict RI from raw climate data without intermediate heuristic feature, which allows joint optimization of the whole system for higher performance. Authors: Renzhi Jing (Princeton University); Ning Lin (Princeton University); Yinda Zhang (Google LLC) |
NeurIPS 2019 |
Toward Resilient Cities: Using Deep Learning to Downscale Climate Model Projections
(Proposals Track)
Abstract and authors: (click to expand)Abstract: Climate projections from Earth System Models (ESM) are widely used to assess climate change impacts. These projections, however, are too coarse in spatial and temporal resolution (e.g. 25-50 kms, monthly) to be used in local scale resilience studies. High-resolution (<4 km) climate projections at dense temporal resolution (hourly) from multiple Earth System models under various scenarios are necessary to assess potential future changes in climate variables and perform meaningful and robust climate resilience studies. Running ESMs in high-resolution is computationally too expensive, therefore downscaling methods are applied to ESM projections to produce high-resolution projections. Using a regional climate model to downscale climate projections is preferred but dynamically downscaling several ESM projections to < 4km resolution under different scenarios is currently not feasible. In this study, we propose to use a 60 year dynamically downscaled climate dataset with hourly output for the Northeastern United States to train Deep Learning models and achieve a computationally efficient method of downscaling climate projections. This method will allow for more ESM projections to be downscaled to local scales under more scenarios in an efficient manner and significantly improve robustness of regional resilience studies. Authors: Muge Komurcu (MIT); Zikri Bayraktar (IEEE) |
ICML 2019 |
Focus and track: pixel-wise spatio-temporal hurricane tracking
(Research Track)
Abstract and authors: (click to expand)Abstract: We tackle extreme climate event tracking problem. It has unique challenges to other visual object tracking problems, including wider range of spatio-temporal dynamics, blur boundary of the target, and shortage of labeled dataset. In this paper, we propose a simple but robust end-to-end model based on multi-layered ConvLSTM, suitable for the climate event tracking problem. It first learns to imprint location and appearance of the target at the first frame with one-shot auto-encoding fashion, and then, the learned feature is consumed by the tracking module to track the target in subsequent time frames. To tackle the data shortage problem, we propose data augmentation based on Social GAN. Extensive experiments show that the proposed framework significantly improves tracking performance on hurricane tracking task over several state-of-the-art methods. Authors: Sookyung Kim (Lawrence Livermore National Laboratory); Sunghyun Park (Korea University); Sunghyo Chung (Korea University); Yunsung Lee (Korea University); Hyojin Kim (LLNL); Joonseok Lee (Google Research); Jaegul Choo (Korea University); Mr Prabhat (Lawrence Berkeley National Laboratory) |
ICML 2019 |
Recovering the parameters underlying the Lorenz-96 chaotic dynamics
(Research Track)
Abstract and authors: (click to expand)Abstract: Climate projections suffer from uncertain equilibrium climate sensitivity. The reason behind this uncertainty is the resolution of global climate models, which is too coarse to resolve key processes such as clouds and convection. These processes are approximated using heuristics in a process called parameterization. The selection of these parameters can be subjective, leading to significant uncertainties in the way clouds are represented in global climate models. Here, we explore three deep network algorithms to infer these parameters in an objective and data-driven way. We compare the performance of a fully-connected network, a one-dimensional and, a two-dimensional convolutional networks to recover the underlying parameters of the Lorenz-96 model, a non-linear dynamical system that has similar behavior to the climate system. Authors: Soukayna Mouatadid (University of Toronto); Pierre Gentine (Columbia University); Wei Yu (University of Toronto); Steve Easterbrook (University of Toronto) |
ICML 2019 |
Targeted Meta-Learning for Critical Incident Detection in Weather Data
(Research Track)
Abstract and authors: (click to expand)Abstract: Due to imbalanced or heavy-tailed nature of weather- and climate-related datasets, the performance of standard deep learning models significantly deviates from their expected behavior on test data. Classical methods to address these issues are mostly data or application dependent, hence burdensome to tune. Meta-learning approaches, on the other hand, aim to learn hyperparameters in the learning process using different objective functions on training and validation data. However, these methods suffer from high computational complexity and are not scalable to large datasets. In this paper, we aim to apply a novel framework named as targeted meta-learning to rectify this issue, and show its efficacy in dealing with the aforementioned biases in datasets. This framework employs a small, well-crafted target dataset that resembles the desired nature of test data in order to guide the learning process in a coupled manner. We empirically show that this framework can overcome the bias issue, common to weather-related datasets, in a bow echo detection case study. Authors: Mohammad Mahdi Kamani (The Pennsylvania State University); Sadegh Farhang (Pennsylvania State University); Mehrdad Mahdavi (Penn State); James Z Wang (The Pennsylvania State University) |
ICML 2019 |
ClimateNet: Bringing the power of Deep Learning to weather and climate sciences via open datasets and architectures
(Research Track)
Abstract and authors: (click to expand)Abstract: Pattern recognition tasks such as classification, object detection and segmentation have remained challenging problems in the weather and climate sciences. While there exist many empirical heuristics for detecting weather patterns and extreme events, the disparities between the output of these different methods even for a single event are large and often difficult to reconcile. Given the success of Deep Learning in tackling similar problems in computer vision, we advocate a DL-based approach. However, DL works best in the context of supervised learning, when labeled datasets are readily available. Reliable, labeled training data is scarce in climate science. `ClimateNet' is an effort to solve this problem by creating open, community-sourced expert-labeled datasets that capture information pertaining to class or pattern labels, bounding boxes and segmentation masks. In this paper we present the motivation, design and status of the ClimateNet dataset and associated model architecture. Authors: Karthik Kashinath (Lawrence Berkeley National Laboratory); Mayur Mudigonda (UC Berkeley); Kevin Yang (UC Berkeley); Jiayi Chen (UC Berkeley); Annette Greiner (Lawrence Berkeley National Laboratory); Mr Prabhat (Lawrence Berkeley National Laboratory) |
ICML 2019 |
Improving Subseasonal Forecasting in the Western U.S. with Machine Learning
(Research Track)
Abstract and authors: (click to expand)Abstract: Water managers in the western United States (U.S.) rely on longterm forecasts of temperature and precipitation to prepare for droughts and other wet weather extremes. To improve the accuracy of these long-term forecasts, the Bureau of Reclamation and the National Oceanic and Atmospheric Administration (NOAA) launched the Subseasonal Climate Forecast Rodeo, a year-long real-time forecasting challenge, in which participants aimed to skillfully predict temperature and precipitation in the western U.S. two to four weeks and four to six weeks in advance. We present and evaluate our machine learning approach to the Rodeo and release our SubseasonalRodeo dataset, collected to train and evaluate our forecasting system. Our predictive system is an ensemble of two regression models, and exceeds that of the top Rodeo competitor as well as the government baselines for each target variable and forecast horizon. Authors: Paulo Orenstein (Stanford); Jessica Hwang (Stanford); Judah Cohen (AER); Karl Pfeiffer (AER); Lester Mackey (Microsoft Research New England) |
ICML 2019 |
A Flexible Pipeline for Prediction of Tropical Cyclone Paths
(Research Track)
Abstract and authors: (click to expand)Abstract: Hurricanes and, more generally, tropical cyclones (TCs) are rare, complex natural phenomena of both scientific and public interest. The importance of understanding TCs in a changing climate has increased as recent TCs have had devastating impacts on human lives and communities. Moreover, good prediction and understanding about the complex nature of TCs can mitigate some of these human and property losses. Though TCs have been studied from many different angles, more work is needed from a statistical approach of providing prediction regions. The current state-of-the-art in TC prediction bands comes from the National Hurricane Center at NOAA, whose proprietary model provides "cones of uncertainty" for TCs through an analysis of historical forecast errors. The contribution of this paper is twofold. We introduce a new pipeline that encourages transparent and adaptable prediction band development by streamlining cyclone track simulation and prediction band generation. We also provide updates to existing models and novel statistical methodologies in both areas of the pipeline respectively. Authors: Niccolo Dalmasso (Carnegie Mellon University); Robin Dunn (Carnegie Mellon University); Benjamin LeRoy (Carnegie Mellon University); Chad Schafer (Carnegie Mellon University) |
ICML 2019 |
Achieving Conservation of Energy in Neural Network Emulators for Climate Modeling
(Research Track)
Abstract and authors: (click to expand)Abstract: Artificial neural-networks have the potential to emulate cloud processes with higher accuracy than the semi-empirical emulators currently used in climate models. However, neural-network models do not intrinsically conserve energy and mass, which is an obstacle to using them for long-term climate predictions. Here, we propose two methods to enforce linear conservation laws in neural-network emulators of physical models: Constraining (1) the loss function or (2) the architecture of the network itself. Applied to the emulation of explicitly-resolved cloud processes in a prototype multi-scale climate model, we show that architecture constraints can enforce conservation laws to satisfactory numerical precision, while all constraints help the neural-network better generalize to conditions outside of its training set, such as global warming. Authors: Tom G Beucler (Columbia University & UCI); Stephan Rasp (Ludwig-Maximilian University of Munich); Michael Pritchard (UCI); Pierre Gentine (Columbia University) |
ICML 2019 |
Evaluating aleatoric and epistemic uncertainties of time series deep learning models for soil moisture predictions
(Research Track)
Abstract and authors: (click to expand)Abstract: Soil moisture is an important variable that determines floods, vegetation health, agriculture productivity, and land surface feedbacks to the atmosphere, etc.. The recently available satellite-based observations give us a unique opportunity to directly build data-driven models to predict soil moisture instead of using land surface models, but previously there was no uncertainty estimate. We tested Monte Carlo dropout with an aleatoric term (MCD+A) for our long short-term memory models for this problem, and ask if the uncertainty terms behave as they were argued to. We show that MCD+A indeed gave a good estimate of our predictive error, provided we tune a hyperparameter and use a representative training dataset. The aleatoric term responded strongly to observational noise and the epistemic term clearly acted as a detector for physiographic dissimilarity from the training data. However, when the training and test data are characteristically different, the aleatoric term could be misled, undermining its reliability. We will also discuss some of the major challenges for which we anticipate the geoscientific communities will need help from computer scientists in applying AI to climate or hydrologic modeling. Authors: Chaopeng Shen (Pennsylvania State University) |
ICML 2019 |
Data-driven surrogate models for climate modeling: application of echo state networks, RNN-LSTM and ANN to the multi-scale Lorenz system as a test case
(Research Track)
Abstract and authors: (click to expand)Abstract: Understanding the effects of climate change relies on physics driven computationally expensive climate models which are still imperfect owing to ineffective subgrid scale parametrization. An effective way to treat these ineffective parametrization of largely uncertain subgrid scale processes are data-driven surrogate models with machine learning techniques. These surrogate models train on observational data capturing either the embed- dings of their (subgrid scale processes’) underlying dynamics on the large scale processes or to simulate the subgrid processes accurately to be fed into the large scale processes. In this paper an extended version of the Lorenz 96 system is studied, which consists of three equations for a set of slow, intermediate, and fast variables, providing a fitting prototype for multi-scale, spatio-temporal chaos, and in particular, the complex dynamics of the climate system. In this work, we have built a data-driven model based on echo state net- works (ESN) aimed, specifically at climate modeling. This model can predict the spatio-temporal chaotic evolution of the Lorenz system for several Lyapunov timescales. We show that the ESN model outperforms, in terms of the prediction horizon, a deep learning technique based on recurrent neural network (RNN) with long short-term memory (LSTM) and an artificial neural network by factors between 3 and 10. The results suggest that ESN has the potential for being a powerful method for surrogate modeling and data-driven prediction for problems of interest to the climate community. Authors: Ashesh K Chattopadhyay (Rice University); Pedram Hassanzadeh (Rice University); Devika Subramanian (Rice University); Krishna Palem (Rice University); Charles Jiang (Rice University); Adam Subel (Rice University) |
ICML 2019 |
Planetary Scale Monitoring of Urban Growth in High Flood Risk Areas
(Research Track)
Abstract and authors: (click to expand)Abstract: Climate change is increasing the incidence of flooding. Many areas in the developing world are experiencing strong population growth but lack adequate urban planning. This represents a significant humanitarian risk. We explore the use of high-cadence satellite imagery provided by Planet, who’s flock of over one hundred ’Dove’ satellites image the entire earth’s landmass everyday at 3-5m resolution. We use a deep learning-based computer vision approach to measure flood-related humanitarian risk in 5 cities in Africa. Authors: Christian F Clough (Planet); Ramesh Nair (Planet); Gopal Erinjippurath (Planet); Matt George (Planet); Jesus Martinez Manso (Planet) |
ICML 2019 |
Using Smart Meter Data to Forecast Grid Scale Electricity Demand
(Deployed Track)
Abstract and authors: (click to expand)Abstract: Highly accurate electricity demand forecasts represent a major opportunity to create grid stability in light of the concurrent deployment of distributed renewables and energy storage, as well as the increasing occurrence of extreme weather events caused by climate change. We present an overview of a deployed machine learning system that accomplishes this task by using smart meter data (AMI) within the region governed by the Electric Reliability Council of Texas (ERCOT). Authors: Abraham Stanway (Amperon Holdings, Inc); Ydo Wexler (Amperon) |
ICML 2019 |
Reinforcement Learning for Sustainable Agriculture
(Ideas Track)
Abstract and authors: (click to expand)Abstract: The growing population and the changing climate will push modern agriculture to its limits in an increasing number of regions on earth. Establishing next-generation sustainable food supply systems will mean producing more food on less arable land, while keeping the environmental impact to a minimum. Modern machine learning methods have achieved super-human performance on a variety of tasks, simply learning from the outcomes of their actions. We propose a path towards more sustainable agriculture, considering plant development an optimization problem with respect to certain parameters, such as yield and environmental impact, which can be optimized in an automated way. Specifically, we propose to use reinforcement learning to autonomously explore and learn ways of influencing the development of certain types of plants, controlling environmental parameters, such as irrigation or nutrient supply, and receiving sensory feedback, such as camera images, humidity, and moisture measurements. The trained system will thus be able to provide instructions for optimal treatment of a local population of plants, based on non-invasive measurements, such as imaging. Authors: Jonathan Binas (Mila, Montreal); Leonie Luginbuehl (Department of Plant Sciences, University of Cambridge); Yoshua Bengio (Mila) |
ICML 2019 |
Machine Intelligence for Floods and the Built Environment Under Climate Change
(Ideas Track)
Abstract and authors: (click to expand)Abstract: While intensification of precipitation extremes has been attributed to anthropogenic climate change using statistical analysis and physics-based numerical models, understanding floods in a climate context remains a grand challenge. Meanwhile, an increasing volume of Earth science data from climate simulations, remote sensing, and Geographic Information System (GIS) tools offers opportunity for data-driven insight and action plans. Defining Machine Intelligence (MI) broadly to include machine learning and network science, here we develop a vision and use preliminary results to showcase how scientific understanding of floods can be improved in a climate context and translated to impacts with a focus on Critical Lifeline Infrastructure Networks (CLIN). Authors: Kate Duffy (Northeastern University); Auroop Ganguly (Northeastern University) |
ICML 2019 |
Predicting Marine Heatwaves using Global Climate Models with Cluster Based Long Short-Term Memory
(Ideas Track)
Abstract and authors: (click to expand)Abstract: Marine heatwaves make human and natural systems vulnerable to disaster risk through the disruption of ecological services and biological function. These extreme warming events in sea surface temperature are expected to become more frequent and longer lasting as a result of climate change. Large ensembles of global climate models now provide petabytes of climate-relevant data and an opportunity to probe machine learning to glean new insights about the climate conditions that cause marine heatwaves. Here we propose a k-means cluster based learning objective to map the geography of marine heatwave drivers globally to build a forecast for extreme sea surface temperatures using Long Short-Term Memory. We describe our machine learning approach to predict when and where future marine heatwaves will occur while leveraging the massive output of data from global climate models where traditional forecasting approaches fall short. The impacts of this work could warn coastal communities by providing a forecast for marine heatwaves, which would mitigate the negative effects on fishery productivity, ecosystem health, and tourism. Authors: Hillary S Scannell (University of Washington); Chris Fraley (Tableau Software); Nathan Mannheimer (Tableau Software); Sarah Battersby (Tableau Software); LuAnne Thompson (University of Washington) |
ICML 2019 |
The Grid Resilience & Intelligence Platform (GRIP)
(Ideas Track)
Abstract and authors: (click to expand)Abstract: Extreme weather events pose an enormous and increasing threat to the nation’s electric power systems and the associated socio-economic systems that depend on reliable delivery of electric power. The US Department of Energy reported in 2015, almost a quarter of unplanned grid outages were caused by extreme weather events and variability in the environment. Because climate change increases the frequency and severity of extreme weather events, communities everywhere will need to take steps to better prepare for, and if possible prevent major outages. While utilities have software tools available to help plan their daily and future operations, these tools do not include capabilities to help them plan for and recover from extreme events. Software for resilient design and recovery is not available commercially and research efforts in this area are preliminary. In this project, we are developing and deploying a suite of novel software tools to anticipate, absorb and recover from extreme events. The innovations in the project include the application of artificial intelligence and machine learning for distribution grid resilience, specifically, by using predictive analytics, image recognition and classification, and increased learning and problem-solving capabilities for the anticipation of grid events. Authors: Ashley Pilipiszyn (Stanford University) |