Sub-seasonal to seasonal forecasts through self-supervised learning (Proposals Track)

Jannik Thuemmel (University of Tuebingen); Felix Strnad (Potsdam Institute for Climate Impact Research); Jakob Schlör (Eberhard Karls Universität Tübingen); Martin V. Butz (University of Tübingen); Bedartha Goswami (University of Tübingen)

Paper PDF Cite
Unsupervised & Semi-Supervised Learning Climate Science & Modeling Extreme Weather Interpretable ML

Abstract

Sub-seasonal to seasonal (S2S) weather forecasts are an important decision- making tool that informs economical and logistical planning in agriculture, energy management, and disaster mitigation. They are issued on time scales of weeks to months and differ from short-term weather forecasts in two important ways: (i) the dynamics of the atmosphere on these timescales can be described only statistically and (ii) these dynamics are characterized by large-scale phenomena in both space and time. While deep learning (DL) has shown promising results in short-term weather forecasting, DL-based S2S forecasts are challenged by comparatively small volumes of available training data and large fluctuations in predictability due to atmospheric conditions. In order to develop more reliable S2S predictions that leverage current advances in DL, we propose to utilize the masked auto-encoder (MAE) framework to learn generic representations of large-scale atmospheric phenomena from high resolution global data. Besides exploring the suitability of the learned representations for S2S forecasting, we will also examine whether they account for climatic phenomena (e.g., the Madden-Julian Oscillation) that are known to increase predictability on S2S timescales.