Fusion of Physics-Based Wildfire Spread Models with Satellite Data using Generative Algorithms (Papers Track)

Bryan Shaddy (University of Southern California); Deep Ray (University of Maryland); Angel Farguell (San Jose State University); Valentina Calaza (University of Southern California); Jan Mandel (University of Colorado Denver); James Haley (Cooperative Institute for Research in the Atmosphere); Kyle Hilburn (Cooperative Institute for Research in the Atmosphere); Derek Mallia (University of Utah); Adam Kochanski (San Jose State University); Assad Oberai (University of Southern California)

Paper PDF Poster File Recorded Talk NeurIPS 2023 Poster Cite
Generative Modeling Extreme Weather

Abstract

Climate change has driven increases in wildfire prevalence, prompting development of wildfire spread models. Advancements in the use of satellites to detect fire locations provides opportunity to enhance fire spread forecasts from numerical models via data assimilation. In this work, a method is developed to infer the history of a wildfire from satellite measurements using a conditional Wasserstein Generative Adversarial Network (cWGAN), providing the information necessary to initialize coupled atmosphere-wildfire models in a physics-informed approach based on measurements. The cWGAN, trained with solutions from WRF-SFIRE, produces samples of fire arrival times (fire history) from the conditional distribution of arrival times given satellite measurements, and allows for assessment of prediction uncertainty. The method is tested on four California wildfires and predictions are compared against measured fire perimeters and reported ignition times. An average Sorensen's coefficient of 0.81 for the fire perimeters and an average ignition time error of 32 minutes suggests that the method is highly accurate.

Recorded Talk (direct link)

Loading…