A 3D super-resolution of wind fields via physics-informed pixel-wise self-attention generative adversarial network (Papers Track)

Takuya Kurihana (University of Chicago); Levente Klein (IBM Research); Kyongmin Yeo (IBM Research); Daniela Szwarcman (IBM Research); Bruce G Elmegreen (IBM Research); Surya Karthik Mukkavilli (IBM Research, Zurich); Johannes Schmude (IBM)

Paper PDF NeurIPS 2023 Poster Cite
Generative Modeling Climate Science & Modeling

Abstract

To mitigate global warming, greenhouse gas sources need to be resolved at a high spatial resolution and monitored in time to ensure the reduction and ultimately elimination of the pollution source. However, the complexity of computation in resolving high-resolution wind fields left the simulations impractical to test different time lengths and model configurations. This study presents a preliminary development of a physics-informed super-resolution (SR) generative adversarial network (GAN) that super-resolves the three-dimensional (3D) low-resolution wind fields by upscaling x9 times. We develop a pixel-wise self-attention (PWA) module that learns 3D weather dynamics via a self-attention computation followed by a 2D convolution. We also employ a loss term that regularizes the self-attention map during pretraining, capturing the vertical convection process from input wind data. The new PWA SR-GAN shows the high-fidelity super-resolved 3D wind data, learns a wind structure at the high-frequency domain, and reduces the computational cost of a high-resolution wind simulation by x 89.7 times.