NeurIPS 2024 Workshop on Tackling Climate Change with Machine Learning
About
Many in the ML community wish to take action on climate change, but are unsure of the pathways through which they can have the most impact. This workshop highlights work that demonstrates that, while no silver bullet, ML can be an invaluable tool in reducing greenhouse gas emissions and in helping society adapt to the effects of climate change. Climate change is a complex problem, for which action takes many forms - from theoretical advances to deployment of new technology. Many of these actions represent high-impact opportunities for real-world change, and are simultaneously interesting academic research problems.
This workshop is part of the “Tackling Climate Change with Machine Learning” workshop series, which aims to bring together those applying ML to climate change challenges and facilitate cross-pollination between ML researchers and experts in climate-relevant fields.
Building on our past workshops on this topic, in this edition the invited talks and panels will focus on two aspects related to questioning common machine learning assumptions in the context of climate impact. Specifically, we will concentrate on two questions that are particularly timely for the machine learning community:
- Given the increasing popularity of large models (for language, vision, and other settings), what are the benefits and costs of such models in the context of climate impact?
- With the growth of specialized benchmark datasets across climate-relevant areas (including in the NeurIPS Datasets and Benchmarks Track), what makes the design of such benchmarks different from that of other ML benchmarks and how do these differences translate into impact for both ML methods and real-world impacts?
About NeurIPS 2024
This workshop will be held as part of the Conference on Neural Information Processing Systems (NeurIPS) 2024 in Vancouver, British Columbia, Canada.
About the Workshop
- Date: December 15th, 2024
-
Location: Vancouver, Canada and virtual
- Mentorship program application deadline:
August 8th, 2024, Anywhere on Earth (AoE)- Application to be a mentee: https://forms.gle/eBQ3H5kt23D1hAEv5
- Application to be a mentor: https://forms.gle/gSZLcUrsYZxadFwn6
- Papers/Proposals submission deadline:
August 29th, 2024, AoE- Papers/Proposals submission website: https://cmt3.research.microsoft.com/CCAINeurIPS2024
- Notification of accepted papers/proposals:
October 9th, 2024, AoE - Slideslive video recording deadline: November 19th, 2024, AOE
- Camera-ready deadline: December 1st, 2024 AOE
- Poster upload (neurips.cc): December 13th, 2024, AOE
- Contact: climatechangeai.neurips2024@gmail.com
Call for Submissions
We invite submissions of short papers using machine learning to address problems in climate mitigation, adaptation, or modeling, including but not limited to the following topics:
- Agriculture and food
- Behavioural and social science
- Buildings
- Carbon capture and sequestration
- Cities and urban planning
- Climate finance and economics
- Climate justice
- Climate science and climate modeling
- Disaster management and relief
- Earth observations and monitoring
- Earth science
- Ecosystems and biodiversity
- Extreme weather
- Forestry and other land use
- Health
- Heavy industry and manufacturing
- Local and indigenous knowledge systems
- Materials science and discovery
- Oceans and marine systems
- Power and energy systems
- Public policy
- Societal adaptation and resilience
- Supply chains
- Transportation
All machine learning techniques are welcome, from kernel methods to deep learning. Each submission should make clear why the application has (or could have) a pathway to positive impacts regarding climate change. We highly encourage submissions which make their data publicly available. Accepted submissions will be invited to give poster presentations, of which some will be selected for spotlight talks.
The workshop does not publish proceedings, and submissions are non-archival. Submission to this workshop does not preclude future publication. Previously published work may be submitted under certain circumstances (see the FAQ).
All papers and proposals submissions must be through the submission website. Submissions will be reviewed double-blind; do your best to anonymize your submission, and do not include identifying information for authors in the PDF. Authors are required to use the workshop style template (based on the NeurIPS style files), available for LaTeX and docx format.
Please see the Tips for Submissions and FAQ, and contact climatechangeai.neurips2024@gmail.com with questions.
Submission Tracks
There are three tracks for submissions: (i) Papers, (ii) Proposals. Submissions are limited to 4 pages for the Papers track, and 3 pages for the Proposals track, in PDF format (see examples from past workshops). References do not count towards this total. Supplementary appendices are allowed but will be read at the discretion of the reviewers. All submissions must explain why the proposed work has (or could have) positive impacts regarding climate change.
PAPERS Track
Work that is in progress, published, and/or deployed.
Submissions for the Papers track should describe projects relevant to climate change that involve machine learning. These may include (but are not limited to) academic research; deployed results from startups, industry, public institutions, etc.; and climate-relevant datasets.
Submissions should provide experimental or theoretical validation of the method presented, as well as specifying what gap the method fills. Authors should clearly illustrate a pathway to climate impact, i.e., identify the way in which this work fits into broader efforts to address climate change. Algorithms need not be novel from a machine learning perspective if they are applied in a novel setting. Details of methodology need not be revealed if they are proprietary, though transparency is highly encouraged.
Submissions creating novel datasets are welcomed. Datasets should be designed to permit machine learning research (e.g. formatted with clear benchmarks for evaluation). In this case, baseline experimental results on the dataset are preferred, but not required.
PROPOSALS Track
Early-stage work and detailed descriptions of ideas for future work.
Submissions for the Proposals track should describe detailed ideas for how machine learning can be used to solve climate-relevant problems. While less constrained than the Papers track, Proposals will be subject to a very high standard of review. Ideas should be justified as extensively as possible, including motivation for why the problem being solved is important in tackling climate change, discussion of why current methods are inadequate, explanation of the proposed method, and discussion of the pathway to climate impact. Preliminary results are optional.
Tips for Submissions
- For examples of typical formatting and content, see submissions from our previous workshops.
- Be explicit: Describe how your proposed approach addresses climate change, demonstrating an understanding of the application area.
- Frame your work: The specific problem and/or data proposed should be contextualized in terms of prior work.
- Address the impact: Describe the practical implications of your method in addressing the problem you identify, as well as any relevant societal impacts or potential side-effects. We recommend reading our further guidelines on this aspect here.
- Explain the ML: Readers may not be familiar with the exact techniques you are using or may desire further detail.
- Justify the ML: Describe why the ML method involved is needed, and why it is a good match for the problem.
- Avoid jargon: Jargon is sometimes unavoidable but should be minimized. Ideal submissions will be accessible both to an ML audience and to experts in other relevant fields, without the need for field-specific knowledge. Feel free to direct readers to accessible overviews or review articles for background, where it is impossible to include context directly.
Addressing Impact
Tackling climate change requires translating ideas into action. The guidelines below will help you clearly present the importance of your work to a broad audience, hopefully including relevant decision-makers in industry, government, nonprofits, and other areas.
- Illustrate the link: Many types of work, from highly theoretical to deeply applied, can have clear pathways to climate impact. Some links may be direct, such as improving solar forecasting to increase utilization within existing electric grids. Others may take several steps to explain, such as improving computer vision techniques for classifying clouds, which could help climate scientists seeking to understand fundamental climate dynamics.
- Consider your target audience: Try to convey with relative specificity why and to whom solving the problem at hand will be useful. If studying extreme weather prediction, consider how you would communicate your key findings to a government disaster response agency. If analyzing a supply chain optimization pilot program, what are the main takeaways for industries who might adopt this technology? To ensure your work will be impactful, where possible we recommend co-developing projects with relevant stakeholders or reaching out to them early in the process for feedback. We encourage you to use this opportunity to do so!
- Outline key metrics: Quantitative or qualitative assessments of how well your results (or for proposals, anticipated results) compare to existing methods are encouraged. Try to give a sense of the importance of your problem and your findings. We encourage you to convey why the particular metrics you choose are relevant from a climate change perspective. For instance, if you are evaluating your machine learning model on the basis of accuracy, how does improved accuracy on a machine learning model translate to climate impact, and why is accuracy the best metric to use in this context?
- Be clear and concise: The discussion of impact does not need to be lengthy, just clear.
- Convey the big picture: Ultimately, the goal of Climate Change AI is to “empower work that meaningfully addresses the climate crisis.” Try to make sure that from the beginning, you contextualize your method and its impacts in terms of this objective.
Speakers
Keynotes
- Dr. Rebecca Hutchinson: Associate Professor in the School of Electrical Engineering and Computer Science and the Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University
- Dr. Sasha Luccioni: Artificial Intelligence Researcher and Climate Lead, Hugging Face.
Panels
Thinking Bigger or Smaller in ML Models for Climate Impact
- Dr. Chris Bretherton: Senior Director of Climate Modeling, AI2; Emeritus Professor, Departments of Atmospheric Science and Applied Mathematics, Allen Institute for Artificial Intelligence
- Dr. Anamika Dubey: Associate Professor, ESIC. Washington State University
- MSc. Isabelle Tingzon: Data Science Consultant, UNICEF; Disaster and Climate Risk Data Fellow, The World Bank.t
Insights from Datasets and Benchmarks in ML and Climate
- Dr. David Rolnick: Assistant Professor of Computer Science and Canada CIFAR AI Chair at McGill University and Mila Quebec AI Institute
- 2nd speaker: TBA.
- 3rd speaker: TBA.
Organizers
Tejasri Nampally (Indian Institute of Technology Hyderabad)
Amrita Gupta (Microsoft)
Diego Kiedanski (Tryolabs)
Yazid Salahudeen Mikail (Ahmadu Bello University)
Arthur Ouaknine (McGill, Mila)
Bistra Dilkina (University of Southern California)
Yoshua Bengio (Mila, UdeM)
Mentorship Program
We are hosting a mentorship program to facilitate exchange between potential workshop submitters and experts working in topic areas relevant to the workshop. The goal of this program is to foster cross-disciplinary collaborations and ultimately increase the quality and potential impact of submitted work.
Expectations
Mentors are expected to guide mentees during the CCAI mentorship program as they prepare submissions for this workshop.
Examples of mentor-mentee interactions may include:
- In-depth discussion of relevant related work in the area of the Paper or Proposal, to ensure submissions are well-framed and contextualized in terms of prior work.
- Giving feedback on the writing or presentation of a Paper or Proposal to bring it to the right level of maturity for submission.
Mentees are expected to initiate contact with their assigned mentor and put in the work and effort necessary to prepare a Paper or Proposal submission by August 29th, 2024, AoE.
We suggest that after the mentor-mentee matching is made, a first (physical or digital) meeting should take place within the first week (Aug 12-16) to discuss the Paper or Proposal and set expectations for the mentorship period. Subsequent interactions can take place either through meetings or via email discussions, following the expectations set during the initial meeting, culminating in a final version of a Paper or Proposal submitted via the CMT portal by August 29th.
Mentors and mentees must abide by the Climate Change AI Code of Conduct: https://www.climatechange.ai/code_of_conduct.
Application
Applications are due by August 8th, 2024, AoE
- Application to be a mentee: https://forms.gle/eBQ3H5kt23D1hAEv5
- Application to be a mentor: https://forms.gle/gSZLcUrsYZxadFwn6
Accepted Works
TBA
Informational Webinar
We have conducted two informational webinars answering questions about the mentorship program and how to prepare a successful submission for the workshop, for previous instances of the workshop. The video recordings can be found here.
Frequently Asked Questions
Mentorship Program FAQ
Q: Are mentors allowed to be authors on the paper for which they provided mentorship?
A: Yes, mentors can be co-authors but not reviewers.
Q: What happens if the mentor/mentee does not fulfill their duties, or if major issues come up?
A: Please email us at climatechangeai.neurips2024@gmail.com and we will do our best to help resolve the situation. Potential breaches of the Code of Conduct will be responded to promptly as detailed therein.
Q: What happens if I apply to be a mentee but do not get paired with a mentor?
A: While we will do our best, we cannot guarantee pairings for everyone. Even if you do not get paired with a mentor, we encourage you to submit a Paper or Proposal to the workshop, and our reviewers will provide you with guidance and feedback on how to improve it.
Q: What happens if my submission does not get accepted to the workshop?
A: While the mentorship program is meant to give early-career researchers and students the opportunity to improve the quality of their work, sometimes submissions will need further polishing and elaboration before being ready for presentation at a CCAI workshop. If this is the case, we invite you to take into account the comments made by the reviewers and to resubmit again to a subsequent CCAI workshop.
Q: I cannot guarantee that I can commit at least 4 hours to the program over the time period. Should I still apply as a mentor?
A: No. While the 4 hour time commitment is a suggestion, we do believe that it is necessary to ensure that all mentees receive the help and guidance they need.
Q: I do not have a background in machine learning; can I still apply to be a mentor/mentee?
A: Yes! We welcome applications from domains that are complementary to machine learning to solve the problems that we are targeting.
Q: What happens if my mentor/mentee wants to continue meeting after the workshop?
A: We welcome and encourage continued interactions after the official mentorship period. That said, neither the mentor nor the mentee should feel obligated to maintain contact.
Submission FAQ
Q: How can I keep up to date on this kind of stuff?
A: Sign up for our mailing list!
Q: I’m not in machine learning. Can I still submit?
A: Yes, absolutely! We welcome submissions from many fields. Do bear in mind, however, that the majority of attendees of the workshop will have a machine learning background; therefore, other fields should be introduced sufficiently to provide context for the work.
Q: What if my submission is accepted but I can’t attend the workshop?
A: You may ask someone else to present your work in your stead. In exceptional circumstances (e.g., visa issues), on a case-by-case basis, people will be able to send in a recording instead of being there in person.
Q: It’s hard for me to fit my submission on 3 or 4 pages. What should I do?
A: Feel free to include appendices with additional material (these should be part of the same PDF file as the main submission). Do not, however, put essential material in an appendix, as it will be read at the discretion of the reviewers.
Q: Can I send submissions directly by email?
A: No, please use the CMT website to make submissions.
Q: The submission website is asking for my name. Is this a problem for anonymization?
A: You should fill out your name and other info when asked on the submission website; CMT will keep your submission anonymous to reviewers.
Q: Do submissions for the Proposals track need to have experimental validation?
A: No, although some initial experiments or citation of published results would strengthen your submission.
Q: The submission website never sent me a confirmation email. Is this a problem?
A: No, the CMT system does not send automatic confirmation emails after a submission, though the submission should show up on the CMT page once submitted. If in any doubt regarding the submission process, please contact the organizers. Also please avoid making multiple submissions of the same article to CMT.
Q: Can I submit previously published work to this workshop?
A: Yes, though under limited circumstances. In particular, work that has previously been published at non-machine learning venues may be eligible for submission; however, work that has been published in conferences on machine learning or related fields is likely not eligible. If your work was previously accepted to a Climate Change AI workshop, this work should have changed or matured substantively to be eligible for resubmission. Please contact climatechangeai.neurips2024@gmail.com with any questions.
Q: Can I submit work to this workshop if I am also submitting to another NeurIPS 2024 workshop?
A: Yes. We cannot, however, guarantee that you will not be expected to present the material at a time that conflicts with the other workshop.