Enhancing Data Center Sustainability with a 3D CNN-Based CFD Surrogate Model (Papers Track)
Soumyendu Sarkar (Hewlett Packard Enterprise); Antonio Guillen (Hewlett Packard Enterprise); Zachariah Carmichael (University of Notre Dame); Vineet Gundecha (Hewlett Packard Enterpise); Avisek Naug (Hewlett Packard Enterprise); Ashwin Ramesh Babu (Hewlett Packard Enterprise Labs); Ricardo Luna Gutierrez (Hewlett Packard Enterprise)
Abstract
Thermal Computational Fluid Dynamics (CFD) models analyze airflow and heat distribution in data centers, but their complex computations hinder efficient energy-saving optimizations for sustainability. We introduce a new method to acquire data and model 3D Convolutional Neural Network (CNN) based surrogates for CFDs, which predict a data center's temperature distribution based on server workload, HVAC airflow rate, and temperature set points. The surrogate model's predictions are highly accurate, with a mean absolute error of 0.31°C compared to CFD-based ground truth temperatures. The surrogate model is three orders of magnitude faster than CFDs in generating the temperature maps for similar-sized data centers, enabling real-time applications. It helps to quickly identify and reduce temperature hot spots($7.7%) by redistributing workloads and saving cooling energy($2.5%). It also aids in optimizing server placement during installation, preventing issues, and increasing equipment lifespan. These optimizations boost sustainability by reducing energy use, improving server performance, and lowering environmental impact.