ClimART: A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models (Papers Track) Spotlight

Salva Rühling Cachay (Technical University of Darmstadt); Venkatesh Ramesh (MILA); Jason N. S. Cole (Environment and Climate Change Canada); Howard Barker (Environment and Climate Change Canada); David Rolnick (McGill University, Mila)

Slides PDF Recorded Talk NeurIPS 2021 Poster Cite
Climate Science & Modeling

Abstract

Numerical simulations of Earth's weather and climate require substantial amounts of computation. This has led to a growing interest in replacing subroutines that explicitly compute physical processes with approximate machine learning (ML) methods that are fast at inference time. Within weather and climate models, atmospheric radiative transfer (RT) calculations are especially expensive. This has made them a popular target for neural network-based emulators. However, prior work is hard to compare due to the lack of a comprehensive dataset and standardized best practices for ML benchmarking. To fill this gap, we introduce the \climart dataset, with more than \emph{10 million samples from present, pre-industrial, and future climate conditions}. ClimART poses several methodological challenges for the ML community, such as multiple out-of-distribution test sets, underlying domain physics, and a trade-off between accuracy and inference speed. We also present several novel baselines that indicate shortcomings of the datasets and network architectures used in prior work.

Recorded Talk (direct link)

Loading…