Do Occupants in a Building exhibit patterns in Energy Consumption? Analyzing Clusters in Energy Social Games (Papers Track)
Hari Prasanna Das (UC Berkeley); Ioannis C. Konstantakopoulos (UC Berkeley); Aummul Baneen Manasawala (UC Berkeley); Tanya Veeravalli (UC Berkeley); Huihan Liu (UC Berkeley); Costas J. Spanos (University of California at Berkeley)
Abstract
Energy use in buildings account for approximately half of global electricity consumption and a significant amount of CO2 emissions. To encourage energy efficient behavior among occupants in a building, energy social games have emerged to be a successful strategy leveraging human-in-the-loop strategy and engaging users in a competitive game with incentives for energy efficient behavior. Prior works involve an incentive design mechanism which is dependent on knowledge of utility functions (energy use behavior) for the users, which is hard to compute when the number of users is high, common in buildings. We propose that the utilities can be grouped to a relatively small number of clusters, which can then be targeted with tailored incentives. Proposed work performs the above segmentation by learning the features leading to human decision making towards energy usage in competitive environment. We propose a graphical lasso based approach with explainable nature for such segmentation, by studying the feature correlations in a real-world energy social game dataset.