Can Federated Learning Save The Planet ? (Papers Track)
Xinchi Qiu (University of Cambridge); Titouan Parcollet (University of Oxford); Daniel J Beutel (Adap GmbH / University of Cambridge); Taner Topal (Adap GmbH); Akhil Mathur (Nokia Bell Labs); Nicholas Lane (University of Cambridge and Samsung AI)
Abstract
Despite impressive results, deep learning-based technologies also raise severe privacy and environmental concerns induced by the training procedure often conducted in data centers. In response, alternatives to centralized training such as Federated Learning (FL) have emerged. Perhaps unexpectedly, FL in particular is starting to be deployed at a global scale by companies that must adhere to new legal demands and policies originating from governments and the civil society for privacy protection. \textit{However, the potential environmental impact related to FL remains unclear and unexplored. This paper offers the first-ever systematic study of the carbon footprint of FL.} First, we propose a rigorous model to quantify the carbon footprint, hence facilitating the investigation of the relationship between FL design and carbon emissions. Then, we compare the carbon footprint of FL to traditional centralized learning. Our findings show FL, despite being slower to converge, can be a greener technology than data center GPUs. Finally, we highlight and connect the reported results to the future challenges and trends in FL to reduce its environmental impact, including algorithms efficiency, hardware capabilities, and stronger industry transparency.