Mangrove Ecosystem Detection using Mixed-Resolution Imagery with a Hybrid-Convolutional Neural Network (Papers Track)

Dillon Hicks (Engineers for Exploration); Ryan Kastner (University of California San Diego); Curt Schurgers (University of California San Diego); Astrid Hsu (University of California San Diego); Octavio Aburto (University of California San Diego)

Paper PDF Slides PDF Recorded Talk Cite
Computer Vision & Remote Sensing Carbon Capture & Sequestration Ecosystems & Biodiversity Forests

Abstract

Mangrove forests are rich in biodiversity and are a large contributor to carbon sequestration critical in the fight against climate change. However, they are currently under threat from anthropogenic activities, so monitoring their health, extent, and productivity is vital to our ability to protect these important ecosystems. Traditionally, lower resolution satellite imagery or high resolution unmanned air vehicle (UAV) imagery has been used independently to monitor mangrove extent, both offering helpful features to predict mangrove extent. To take advantage of both of these data sources, we propose the use of a hybrid neural network, which combines a Convolutional Neural Network (CNN) feature extractor with a Multilayer-Perceptron (MLP), to accurately detect mangrove areas using both medium resolution satellite and high resolution drone imagery. We present a comparison of our novel Hybrid CNN with algorithms previously applied to mangrove image classification on a data set we collected of dwarf mangroves from consumer UAVs in Baja California Sur, Mexico, and show a 95\% intersection over union (IOU) score for mangrove image classification, outperforming all our baselines.

Recorded Talk (direct link)

Loading…