Learning the distribution of extreme precipitation from atmospheric general circulation model variables (Papers Track)
Philipp Hess (Free University Berlin); Niklas Boers (Free University Berlin)
Abstract
Precipitation extremes are projected to become more frequent and severe in a warming atmosphere over the coming decades. However, the accurate prediction of precipitation, in particular of extremes, remains a challenge for numerical weather prediction models. A large source of error are subgrid-scale parameterizations of processes that play a crucial role in the complex, multi-scale dynamics of precipitation, but are not explicitly resolved in the model formulation. Here we follow a hybrid, data-driven approach, in which atmospheric variables such as wind fields are forecast in time by a general circulation model (GCM) ensemble and then mapped to precipitation using a deep convolutional autoencoder. A frequency-based weighting of the loss function is introduced to improve the learning with regard to extreme values. Our results show an improved representation of extreme precipitation frequencies, as well as better error and correlation statistics compared to a state-of-the-art GCM ensemble.