VideoGasNet: Deep Learning for Natural Gas Methane Leak Classification Using An Infrared Camera (Papers Track)
Jingfan Wang (Stanford University)
Abstract
Mitigating methane leakage from the natural gas system have become an increasing concern for climate change. Efficacious methane leak detection and classification can make the mitigation process more efficient and cost effective. Optical gas imaging is widely used for the purpose of leak detection, but it cannot directly provide detection results and leak sizes. Few studies have examined the possibility of leak classification using videos taken by the infrared camera (IR), an optical gas imaging device. In this study, we consider the leak classification problem as a video classification problem and investigated the application of deep learning techniques in methane leak detection. Firstly we collected the first methane leak video dataset - GasVid, which has ~1 M frames of labeled videos of methane leaks from different leaking equipment, covering a wide range of leak sizes (5.3-2051.6 g\ce{CH4}/h) and imaging distances (4.6-15.6 m). Secondly, we studied three deep learning algorithms, including 2D Convolutional Neural Networks (CNN) model, 3D CNN and the Convolutional Long Short Term Memory (ConvLSTM). We find that 3D CNN is the most outstanding and robust architecture, which was named VideoGasNet. The leak-non-leak detection accuracy can reach 100%, and the highest small-medium-large classification accuracy is 78.2% with our 3D CNN network. In summary, VideoGasNet greatly extends the capabilities of IR camera-based leak monitoring system from leak detection only to automated leak classification with high accuracy and fast processing speed, significant mitigation efficiency.