Efficient Multi-temporal and In-season Crop Mapping with Landsat Analysis Ready Data via Long Short-term Memory Networks (Research Track)

Jinfan Xu (Zhejiang University); Renhai Zhong (Zhejiang University); Jialu Xu (Zhejiang University); Haifeng Li (Central South University); Jingfeng Huang (Zhejiang University); Tao Lin (Zhejiang University)

Paper PDF Cite
Agriculture & Food

Abstract

Globe crop analysis from plentiful satellite images yields state-of-the-art results about estimating climate change impacts on agriculture with modern machine learning technology. Generating accurate and timely crop mapping across years remains a scientific challenge since existing non-temporal classifiers are hardly capable of capturing complicated temporal links from multi-temporal remote sensing data and adapting to interannual variability. We developed an LSTM-based model trained by previous years to distinguish corn and soybean for the current year. The results showed that LSTM outperformed random forest baseline in both in-season and end-of-the-season crop type classification. The improved performance is a result of the cumulative effect of remote sensing information that has been learned by LSTM model structure. The work pF(24rovides a valuable opportunity for estimating the impact of climate change on crop yield and early warning of extreme weather events in the future.