DETECTION OF HOUSING AND AGRICULTURE AREAS ON DRY-RIVERBEDS FOR THE EVALUATION OF RISK BY LANDSLIDES USING LOW-RESOLUTION SATELLITE IMAGERY BASED ON DEEP LEARNING. STUDY ZONE: LIMA, PERU (Papers Track)

Brian Cerrón (National University of Engineering); Cristopher Bazan (National University of Engineering); Alberto Coronado (National University of Engineering)

Paper PDF Slides PDF Recorded Talk Cite
Buildings Climate Science & Modeling Heavy Industry and Manufacturing Land Use

Abstract

The expansion of human settlements in Peru has caused risk exposure to landslides. However, this risk could increase because the intensity of the El niño phenomenon will be greater in the coming years, increasing rainfall on the Peruvian coast. In this paper, we present a novel methodology for detecting housing areas and agricultural lands in low-resolution satellite imagery in order to analyze potential risk in case of unexpected landslides. It was developed by creating two datasets from Lima Metropolitana in Peru, one of which is for detecting dry riverbeds and agriculture lands, and the other for classifying housing areas. We applied data augmentation based on geometrical methods and trained architectures based on U-net methods separately and then, overlap the results for risk assessment. We found that there are areas with significant potential risk that have been classified by the Peruvian government as medium or low risk areas. On this basis, it is recommended obtain a dataset with better resolution that can identify how many housing areas will be affected and take the appropriate prevention measures. Further research in post-processing is needed for suppress noise in our results.

Recorded Talk (direct link)

Loading…